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Large Language Models: Introduction and Recent Advances

Semester I, 2024-25

Quiz 1

Answer the questions in the spaces provided. No extra pages will be given. Write
proper justifications for every answer.

Course Code:

Name:

Entry Number:

Total Marks: 20 Time: 40 minutes

Questions Marks Score

Variational Inference in Language Modeling 4

Backpropagation Through Time 4

Combining Word Embeddings Using Autoencoders 6

A Sneak Peek into Transformers 6

Total 20

Question 1: Variational Inference in Language Modeling

Given two probability distributions P (Y ) and Q(Y ), the Kullback-Leibler divergence (popularly called
KL divergence), between these two distributions can be expressed as:

DKL(P (Y ) ∥Q(Y )) = Ey∼P log

(
P (Y = y)

Q(Y = y)

)
.

Now, consider a language model where:

• P (output | context) represents the true posterior probability distribution for generating a specific
output (e.g., a word or sequence of words) given an input context (e.g., a preceding sentence or
phrase).

• P (output) is the prior probability distribution of the output before observing any context, which
reflects the likelihood of generating the output without any conditioning information.

• P (context | output) is the likelihood of observing a given context given the output, which could
be interpreted as the probability of the input context being consistent with the output.

• Q(output | context) is an approximate distribution used to estimate the true posterior
distribution P (output | context).



1. Show that the KL divergence between the approximate distribution Q(output | context) and the
true posterior P (output | context) can be expressed as:

DKL(Q(output | context) ∥ P (output | context)) = logP (context)

− EQ(output|context) [logP (context | output)]
+DKL(Q(output | context) ∥ P (output)).

(4 marks)

Question 2: Backpropagation Through Time

In the process of backpropagation through time (BPTT) for training a Recurrent Neural Network
(RNN), we compute various derivatives to update the network’s parameters. For the scenarios given
below, determine the dimensions of the derivatives.

1. Derivative of the Loss with Respect to the Output Matrix
Assume that the output matrix O has dimensions n × m. What are the dimensions of ∂L

∂O?
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(1 mark)

2. Derivative of the Output Matrix with Respect to the Hidden State Matrix
Assume that the output matrix O has dimensions n × m and the hidden state matrix H also has
dimensions n×m. What are the dimensions of ∂O

∂H?

(1 mark)

3. Derivative of the Hidden State Matrix with Respect to the Input Vector
The hidden state matrix H has dimensions n×m and the input vector X has p elements. What are
the dimensions of ∂H

∂X?

(1 mark)

4. Second-Order Derivative of the Loss with Respect to the Hidden State Matrix
The loss function L depends on the hidden state matrix H with dimensions n ×m. What are the

dimensions of the second-order derivative ∂2L
∂H2 ?

(1 mark)

Question 3: Combining Word Embeddings Using Autoencoders

We discussed different word embedding methods in class. To combine the embeddings of two or more
words, we can simply add or concatenate them - we saw this approach in CNN-based neural language
models where embeddings are concatenated.
Another approach of combining word embeddings can be using an autoencoder.

In the autoencoder, two input word embeddings/vectors x1,x2 ∈ RDx×1 are first concatenated into a

single vector x =

[
x1

x2

]
∈ R2Dx×1, and the parent vector p can be computed as:

p = ReLU(W1x+ b1) ∈ RDp×1,

where ReLU(x) = max(0, x), and W1 can be decomposed as:

W1 =
[
W11 W12

]
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Figure 1: Using an autoencoder to combine embeddings of two words

thus W1x becomes:
W1x = W11x1 +W12x2.

During training, we use the parent vector p to reconstruct the input vectors:

x′ =

[
x′
1

x′
2

]
= W2p+ b2 ∈ R2Dx×1.

where x′
1,x

′
2 ∈ RDx×1 are the reconstructions. Correspondingly, a re-construction loss J1 that

computes the Euclidean distance between inputs and re-constructions is used during training:

J1 =
1

2
∥x′ − x∥2 ∈ R.

The network is trained using the total loss:

J = J1 + J2.

where, J2 is a cross-entropy loss between actual label y and predicted label ŷ = W3p+ b3:

J2 = CE(y, ŷ) ∈ R

Now, compute the following gradients for the re-construction loss J1.
You can use the following notation

1{x > 0} =

{
1, if x > 0

0, otherwise

Using it on a matrix performs an element-wise operation, e.g.,

1

{[
5 0
−3 7

]
> 0

}
=

[
1 0
0 1

]
.

1. δ1 = ∂J1

∂p .
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(2 marks)

2. δ2 = ∂J1

∂h (where, h = W1x+ b1) in terms of δ1.

(2 marks)

3. ∂J1

∂W1
in terms of δ2.

(2 marks)
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Question 4: A Sneak Peek into Transformers

Consider a transformer model used for natural language processing tasks. Given a sequence of input
vectors X = [x1,x2, . . . ,xn], where each xi is in Rd, the attention mechanism computes the attention
scores using the following steps:

• Query, Key, and Value Matrices: The input vectors are linearly transformed into query (Q),
key (K), and value (V) matrices using weight matrices WQ, WK , and WV respectively:

Q = XWQ, K = XWK , V = XWV

where WQ, WK , and WV are in Rd×d.

• Scaled Dot-Product Attention: The attention scores are computed as softmax over the scaled
dot-product of the query and key matrices. Then, the final output from each head is computed as:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

Given the above, answer the following questions:

Suppose WQ and WK are symmetric and diagonalizable matrices with eigenvector matrices PQ and
PK , respectively.

1. Prove that if the eigenvectors of WQ and WK are aligned (i.e., PQ = PK), then the attention scores
will favor attention in the directions aligned with these common eigenvectors.

(2 marks)

2. Conversely, if every eigenvector of WQ is orthogonal to the eigenvectors of WK, i.e.,

∀i, ∀j, PQ[: i] ⊥ PK [: j]

prove that the attention scores tend to be uniformly distributed.
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(3 marks)

3. If the rank of the matrix QKT is p and the rank of V is q, then what can you infer about the rank
of the attention matrix Attention(Q,K,V) in terms of p and q? Justify your answer.

(1 mark)
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