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OpenAI introduces GPT-OSS
An open weights model with strong reasoning performance

The 120B model is on par with 
o4-mini on reasoning 
benchmarks , while running 
efficiently on a single 80 GB 
GPU

Announced on 
August 5, 2025

OpenAI Blog

They also released a 20b 
model, which shows similar 
performance to that of o3-
mini. It only requires 16 GB of 
memory and can easily run on 
edge devices, making it ideal 
for local inference.

This is a huge deal, allowing people to run state-
of-the-art gpt models locally on their devices 

https://openai.com/open-models/
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Where We Were: Pre-trained Word Vectors

• Start with pretrained word embeddings (no 
context!)

• Learn how to incorporate context in an LSTM or
Transformer while training on the task.

• The training data we have for our downstream 
task (like question answering) must be sufficient 
to teach all contextual aspects of language.

• Most of the parameters in our network are 
randomly initialized!

… the movie was…

𝒚

Not pretrained

pretrained 
(word embeddings)
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Pre-trained Word Vectors -> Pre-trained Models

… the movie was…

𝒚

Pretrained jointly

• All (or almost all) parameters in NLP networks are initialized
via pretraining.

• Pretraining methods hide parts of the input from the
model, and train the model to reconstruct those parts.

• This has been exceptionally effective at building strong:

• representations of language

• parameter initializations for strong NLP
models.

• Probability distributions over language that we can sample 
from
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Pretraining for Three Types of Architectures

The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders • Gets bidirectional context – can condition on future!

• How do we pretrain them?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?
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Slides are adopted from Jacob Devlin

BERT: Bidirectional Encoder Representations from Transformers
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Background - Bidirectional Context

• Bidirectional context, unlike unidirectional context, takes into account both the left and 
right contexts.

Apple is my favourite fruit and I eat it all the time.

Left Context Right Context

Target Word

Apple is my favourite brand for buying laptop and other gadgets.

Left Context Right Context

Target Word



Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Motivation
• Problem with previous methods: 

• Language models only use left context or right context. 
• But language understanding is bidirectional.

• Possible Issue: 
• Directionality is needed to generate a well-formed probability distribution.
• Words can see themselves in a bidirectional model.
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Unidirectional vs. Bidirectional Models

RNN RNN RNN

RNN RNN RNN

<s> read a

read a book

Unidirectional

RNN RNN RNN

RNN RNN RNN

<s> read a

read a book

Bidirectional
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Masked Language Modelling
• Mask out k% of the input words, and then predict the masked words (Usually k = 15%). Example :

• Too little masking: Too expensive to train
• Too much masking: Not enough context

• The model needs to predict 15% of the words, but we don’t replace with [MASK] 100% of the time. 
Instead:
○ 80% of the time, replace with [MASK]

○ Example : like going to the park → like going to the [MASK]

○ 10% of the time, replace random word
○ Example : like going to the park → like going to the store

○ 10% of the time, keep same
○ Example : like going to the park → like going to the park

I like going to the [MASK] in the evening

park
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Next Sentence Prediction
• To learn relationships between sentences, predict whether Sentence B is actual 

sentence that proceeds Sentence A, or a random sentence.

• Important for many important downstream tasks such as Question Answering (QA) and 
Natural Language Inference (NLI) 

• How to choose sentences A and B for pretraining?
• 50% of the time B is the actual next sentence that follows A (labeled as IsNext)
• 50% of the time it is a random sentence from the corpus (labeled as NotNext)

Input = [CLS] I enjoy read [MASK] book ##s [SEP] 
I finish ##ed a [MASK] novel [SEP]
Label = IsNext

Input = [CLS] I enjoy read ##ing book [MASK] [SEP] 
The dog ran [MASK] the street [SEP]
Label = NotNext
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Input Representation
• Use 30,000 WordPiece vocabulary on input.
• For a given token, its input representation is constructed by summing the token 

embeddings, the segmentation embeddings and the position embeddings.

Source of Image : BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019)
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Training Details

• Data: Wikipedia (2.5B words) + BookCorpus (800M words)
• Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
• Training Time: 1M steps (~40 epochs)
• Optimizer: AdamW, 1e-4 learning rate, linear decay
• BERT-Base: 12-layer, 768-hidden, 12-head
• BERT-Large: 24-layer, 1024-hidden, 16-head
• Trained on 4x4 or 8x8 TPU slice for 4 days
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Fine-Tuning Procedure
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Pre-Training Encoder-Decoder Models
• For encoder-decoders, we could do something like language modeling, but where a 

prefix of every input is provided to the encoder and is not predicted.

h1, …, hT = Encoder (x1, …, xT)

hT+1, …, hT+M = Decoder (y1, …, yi-1, h1, …, hT )

P(yi | y<i, h1:T) = Softmax(Whi + b)

The encoder portion benefits from bidirectional
context; the decoder portion is used to train the whole
model through language modeling. x1, …, xT

y1, …, yT+M

y2, …
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Pre-Training Encoder-Decoder Models
• How can we pre-train a model for P(y | x)?

• Requirements: 
1. should use unlabeled data
2. should force a model to attend from y back to x
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Pre-Training BART (Bidirectional and Auto-Regressive 
Transformers)

• Several possible strategies for corrupting a sequence are explored in the
BART paper.

Infilling is longer 
spans than masking

Lewis et al. (2019), “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”
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Pre-Training BART
• Sequence-to-sequence Transformer trained on this data: permute/make/delete tokens, 

then predict full sequence autoregressively.

Lewis et al. (2019), “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”
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BERT vs. BART

• BERT: only an encoder, trained with masked 
language modeling objective. Cannot
generate text or do Seq2Seq tasks (in 
standard form).

B D

A _    C _ E

• BART: consists of both an encoder and a 
decoder. Can also use just the encoder 
wherever we would use BERT.
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BART for Summarization
• Pre-train on the BART task: take random chunks of text, noise them according to the 

schemes described, and try to “decode” the clean text

• Fine-tune on a summarization dataset: a news article is the input and a summary of that 
article is the output (usually 1-3 sentences depending on the dataset)

• Can achieve good results even with few summaries to fine-tune on, compared to basic 
seq2seq models which require 100k+ examples to do well
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T5: Text-to-Text Transfer Transformer

Raffel et al. (2019), “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”
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Pre-Training T5
• Pre-training: similar denoising scheme to BART (they were released within a week of 

each other in fall 2019)
• Input: text with gaps ; Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

Replace different-length spans from the input 
with unique placeholders; decode out the 
spans that were removed!
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Pretrain

BERTBASE-sized 
encoder-decoder  

Transformer

Denoising  

objective

C4 dataset
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GLUE
Pretrain

Finetune

BERTBASE-sized 
encoder-decoder  

Transformer

C4 dataset

Denoising  
objective
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GLUE Benchmark
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GLUE

CNN/DM

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder  
Transformer

Denoising  
objective

C4 dataset
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GLUE

CNN/DM

SQuAD

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder  
Transformer

Denoising  
objective

C4 dataset
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GLUE

CNN/DM

SQuAD

SuperGLUE

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder  
Transformer

C4 dataset

Denoising  
objective
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GLUE

CNN/DM

SQuAD

SuperGLUE

WMT14 EnDe

WMT15 EnFr

WMT16 EnRo

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder  
Transformer

C4 dataset

Denoising  
objective



Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE

CNN/DM

SQuAD

SuperGLUE

WMT14 EnDe

WMT15 EnFr

WMT16 EnRo

Pretrain

Finetune Evaluate on 

validation

step 750000

step 760000

step 770000

step 780000

BASE
BERT -sized

encoder-decoder  
Transformer

C4 dataset

Denoising  
objective
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GPT-5: Next Gen AI
OpenAI officially launched GPT-5, marking the biggest leap in artificial 

intelligence since GPT-4.

GPT-5 is OpenAI’s latest 
generational model, pushing 
the boundary of problem 
solving across complex 
reasoning tasks while reducing 
hallucinations to the 
minimum.

Announced on 
August 7, 2025

OpenAI Blog

GPT-5 unifies the capabilities 
from its earlier models, 
allowing users to use a single 
model that is efficient in 
reasoning, conversation and 
multimodal tasks.

https://openai.com/index/introducing-gpt-5/
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Where Do the Pre-trained Models Fail?

Reason: Most of their training data is not in instruction-output format

Pre-trained models (also called base models) can’t follow instructions in zero-
shot setting!!
Example with Llama-3-8B-base [The first sentence is the input prompt]

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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How to make ChatGPT ?
• Pre-Training

• This is the point where most of the reasoning power is infused in the model.
• Data – Billions of tokens of unstructured text from the internet

• Instruction Tuning
• Trains models to follow natural language instructions
• Data – Several thousand (Task/Instruction, Output) examples

• Reinforcement Learning from Human Feedback
• Show the output(s) generated by models to humans/reward model
• Collect feedback in the form of preferences.
• Use these preferences to further improve the model
• Data – Several thousand (Task, instruction) pairs and a reward model/

preference model/human

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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But Instruction-tuning is Not Enough - Why?

• Question: What’s the best way to lose weight quickly?

What to say? What not to say?

Reduce carb intake, increase fiber & 
protein content, increase vigorous 
exercise

You should stop eating entirely for a few 
days

Instruction tuning can make this happen But can’t prevent this from happening

Alignment can prevent certain outputs that the model assumes to be 
correct, but humans consider wrong. 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

How to make ChatGPT ?
• Pre-Training

• This is the point where most of the reasoning power is infused in the model.
• Data – Billions of tokens of unstructured text from the internet

• Instruction Tuning
• Trains models to follow natural language instructions
• Data – Several thousand (Task/Instruction, Output) examples

• Reinforcement Learning from Human Feedback
• Show the output(s) generated by models to humans/reward model
• Collect feedback in the form of preferences.
• Use these preferences to further improve the model
• Data – Several thousand (Task, instruction) pairs and a reward model/

preference model/human

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Why Do We Need Instruction Training?

To bridge the gap between
Observed behavior: Next word prediction

Desired Behavior: Instruction Following

To allow behavior modification during 
inference

Meta-instruction: Answer all questions as 
William Shakespeare would.

Catch The instruction-tuning data should be diverse and 
have high coverage

Content Credit: Instruction Tuning for Large Language Models: A Survey

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Training Loss

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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How to train? (Encoder-Decoder Models)
• Given (instruction, output) pairs

• Tokenized  𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑖1, … , 𝑖𝑚  𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑜1, … , 𝑜𝑛)

Transformer Encoder

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

𝑜1 𝑜2 𝑜3 𝑜4

𝑜1 𝑜2 𝑜3 𝑜4 < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| >

𝑅 𝜃 = ෍

𝑗=0

𝑛

log 𝑝𝜃(𝑜𝑗+1|𝑜1:𝑗, 𝑖1:𝑚)

𝑜5 = < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| >

Transformer Decoder

BOS

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

Cross-attention

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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How to train? (Decoder-only models)
• Given (instruction, output) pairs

• Tokenized  𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑖1, … , 𝑖𝑚  𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑜1, … , 𝑜𝑛)

Transformer Decoder

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑜1 𝑜2 𝑜3 𝑜4

𝑜1 𝑜2 𝑜3 𝑜4 < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| >

𝑅 𝜃 = ෍

𝑗=0

𝑛

log 𝑝𝜃(𝑜𝑗+1|𝑜1:𝑗, 𝑖1:𝑚)

𝑜𝑛+1 = < 𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡 >
𝑜1:𝑗 = 𝑜1, … , 𝑜𝑗

𝑖1:𝑚 = 𝑖1, … , 𝑖𝑚

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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But is response-only loss optimal for decoder-only 
models?
• WHY zero-out loss on prompt tokens and backpropagate only on response tokens for 

decoder-only models – where both prompt and response are processed by the same 
decoder?
• Used in FLAN paper (first paper that coined the term “Instruction Tuning”) – no rationale provided. 

Thereafter used widely till date – unquestioned!

• Seems to be a direct adaptation from SFT loss for classification tasks …

• Isn’t the conventional loss kind of like teaching a child how to given answers to questions but not 
teaching how to understand the questions themselves!

• So, is there more to it? 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Weighted Instruction Tuning (WIT)
• Consider loss on both prompt and 

response tokens and weight them 
based on different factors (training 
data, model properties, downstream 
task, etc.)

TACL’25

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Key Takeaways
• The conventional instruction tuning (zeroing out the loss on prompt tokens and 

backpropagating only on response tokens) is sub-optimal.

• Low-to-moderate prompt token weights (0< 𝜆𝑝 <0.6) coupled with a moderate-to-high 
response token weight (0.6< 𝜆𝑟  <1) significantly boosts generalization.

• Not only do WIT-finetuned models demonstrate consistent improvement in 
generalization over conventional instruction-tuned models (average relative gain of 
6.55%), but they are also less prompt sensitive and are stronger bases for 
subsequent preference alignment tuning (e.g., DPO).

• The optimal choice of prompt and response token weights depend on multiple 
factors, including characteristics of training dataset (like prompt complexity, length, 
etc.), language model (like perplexity on training prompts), and also the evaluation 
benchmark (if known apriori). 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Getting the Data

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Where does the data come from? 
• Human-crafted

• Flan-2021
• Transforms NLP benchmarks into natural language input-output pairs.

Credit: The Flan Collection: Designing Data and Methods
for Effective Instruction Tuning

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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SuperNatural Instructions
Tasks contributed by NLP practitioners

Creative modification of existing NLP 
tasks

Synthetic tasks that can be 
communicated in few sentences

Credit: SUPER-NATURALINSTRUCTIONS: Generalization via 
Declarative Instructions on 1600+ NLP Tasks

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Synthetic Instruction-Tuning Data

• Cheap and easy to obtain
• Often better quality than human-crafted data.

Use a pre-trained LM to 
generate synthetic 

task/instruction as well 
as output.

• Self-Instruct
• Evol-Instruct
• Orca
• Instruction Back-translation

We will look at 4 popular 
approaches for synthetic 

data generation for 
instruction tuning:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Self-Instruct
• Given:

• Objective:
• Generate new instructions
• Generate examples for each instruction

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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The Self-Instruct Process – Instruction Generation

Synthetically-
Generated
 instructions

Sample 8

Similarity with 
existing

Instructions < 
threshold

yes

Pre-trained 
LLM such as 

GPT-3

Generated 
Instructions

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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The Self-Instruct Process – Classification Task 
Identification

Can the following task be regarded as a classification task with finite output labels?

Task: Given my personality and the job, tell me if I would be suitable.
Is it classification? Yes

Task: Give me an example of a time when you had to use your sense of humor.
Is it classification? No
.
.
.
Task: {instruction for the target task}
Is it classification?
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The Self-Instruct Process – Instance Generation
• Given an instruction, generate instances that follow the instruction.

• In-context learning can be used to generate instances for an instruction

• Input-First (e.g., sort an array)
Come up with examples for the following tasks. Try to generate multiple examples when possible.
If the task doesn’t require additional input, you can generate the output directly.

Task: Which exercises are best for reducing belly fat at home?
Output:
- Lying Leg Raises
- Leg In And Out
- Plank
- Side Plank
- Sit-ups

Task: {Instruction for the target task}
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The Self-Instruct Process – Instance Generation - II

Given the classification task definition and the class labels, generate an input that corresponds to each of 
the class labels. If the task doesn’t require input, just generate the correct class label.

Task: Classify the sentiment of the sentence into positive, negative, or mixed.
Class label: mixed
Sentence: I enjoy the flavor of the restaurant but their service is too slow.
Class label: Positive
Sentence: I had a great day today. The weather was beautiful and I spent time with friends.
Class label: Negative

Task: {instruction for the target task}

Output First
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Self-Instruct: The complete pipeline

Image Credit: SELF-INSTRUCT: Aligning Language Models
with Self-Generated Instructions
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Evaluation results on unseen tasks from SUPERNI 
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Human evaluation on 252 instructions

Image Credit: SELF-INSTRUCT: Aligning Language Models
with Self-Generated Instructions
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Evol-Instruct

Motivation:
Most of the instruction datasets 
contain only simple instructions.
LLMs can be used to make 
instructions more complex.

Instruction Evolver
An LLM that uses prompts 
to evolve instructions.

Instruction Eliminator
Checks whether the 
evolution fails.
- Non-informative 
responses
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Instruction Evolver – In-Depth Evolution
• Add constraints
• Deepening
• Concretizing
• Increase Reasoning

I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex 
version to make those famous AI systems
(e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be 
understood and responded by humans.
…
You SHOULD complicate the given prompt using the following 
method: Please add one more constraints/requirements into 
#Given Prompt#

#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
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Instruction Evolver – In-Breadth Evolution
• Enhance

• Topic Coverage
• Skill Coverage

I want you act as a Prompt Creator. Your goal is to draw inspiration from the 
#Given Prompt# to create a brand new prompt. This new prompt should 
belong to the same domain as the #Given Prompt# but be even more rare. 
The LENGTH and difficulty level of the #Created Prompt# should be similar 
to that of the #Given Prompt#.
The #Created Prompt# must be reasonable and must be understood and 
responded by humans. ‘#Given Prompt#’, ‘#Created Prompt#’, ‘given prompt’ 
and ‘created prompt’ are not allowed to appear in #Created Prompt#.

#Given Prompt#:
<Here is instruction.>
#Created Prompt#:
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Orca
• How can we improve the information content in the response?

• Add a system instruction from a diverse instruction set including chain-of-thought, 
reasoning steps, explain like I’m five, being helpful and informative, etc.
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Instruction Back-Translation

Gather Data:

• Unlabeled text 
from Clueweb 
(Overwijk et al., 
2022).

• 3,200 pieces of 
human-written 
(instruction, 
response) 
format data.

Back-Translation 
Model Training:

• Use LLaMA 
(Touvron et al., 
2023b).

• Train on seed 
data, taking 
response as 
input, generating 
instruction as 
output.

Generate Raw 
Data:

• Feed unlabeled 
texts into the 
trained back-
translation 
model.

• Produce raw 
(instruction, 
response) 
format data.

Evaluation 
Model:

• Train another 
LLaMA-based 
model.

• Assess the 
quality of 
(instruction, 
response) pairs 
generated in 
Step 3.

Filter & Fine-
Tune:

• Remove low-
quality pairs.

• Use remaining 
data for fine-
tuning large 
language 
models (LLMs).

Content Credit: Instruction Tuning for Large 
Language Models: A Survey
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Popular Instruction-Tuned Models on Known Datasets
• Flan-T5 (11B)

• Fine-tuned T5-11B on Flan dataset 

• Alpaca (7B)
• Finetuned LLaMa-7B on synthetic dataset generated from text-davinci-003 generated using Self-

Instruct

• WizardLM (7B)
• Finetuned LLaMa-7B on on an instruction dataset generated from ChatGPT using Evol-Instruct .

• Mistral-7B-OpenOrca
• Finetuned Mistral-7B on Orca style completions from GPT-4 & GPT-3.5
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Instruction Tuned Models are Quick Learners
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Main Takeaways

Instruction tuning transforms pre-trained models to be more usable by humans.

Achieved by maximizing conditional log-likelihood of outputs given the instructions.

Datasets for instruction-tuning can be generated both synthetically as well as by humans.

Instruction-tuned models can quickly learn a task with limited data.
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