
Pre-training Strategies

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

https://tanmoychak.com/

OpenAI introduces GPT-OSS
An open weights model with strong reasoning performance

The 120B model is on par with
o4-mini on reasoning
benchmarks , while running
efficiently on a single 80 GB
GPU

Announced on
August 5, 2025

OpenAI Blog

They also released a 20b
model, which shows similar
performance to that of o3-
mini. It only requires 16 GB of
memory and can easily run on
edge devices, making it ideal
for local inference.

This is a huge deal, allowing people to run state-
of-the-art gpt models locally on their devices

https://openai.com/open-models/

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Where We Were: Pre-trained Word Vectors

• Start with pretrained word embeddings (no
context!)

• Learn how to incorporate context in an LSTM or
Transformer while training on the task.

• The training data we have for our downstream
task (like question answering) must be sufficient
to teach all contextual aspects of language.

• Most of the parameters in our network are
randomly initialized!

… the movie was…

𝒚

Not pretrained

pretrained
(word embeddings)

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-trained Word Vectors -> Pre-trained Models

… the movie was…

𝒚

Pretrained jointly

• All (or almost all) parameters in NLP networks are initialized
via pretraining.

• Pretraining methods hide parts of the input from the
model, and train the model to reconstruct those parts.

• This has been exceptionally effective at building strong:

• representations of language

• parameter initializations for strong NLP
models.

• Probability distributions over language that we can sample
from

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pretraining for Three Types of Architectures

The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders • Gets bidirectional context – can condition on future!

• How do we pretrain them?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Slides are adopted from Jacob Devlin

BERT: Bidirectional Encoder Representations from Transformers

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Background - Bidirectional Context

• Bidirectional context, unlike unidirectional context, takes into account both the left and
right contexts.

Apple is my favourite fruit and I eat it all the time.

Left Context Right Context

Target Word

Apple is my favourite brand for buying laptop and other gadgets.

Left Context Right Context

Target Word

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Motivation
• Problem with previous methods:

• Language models only use left context or right context.
• But language understanding is bidirectional.

• Possible Issue:
• Directionality is needed to generate a well-formed probability distribution.
• Words can see themselves in a bidirectional model.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Unidirectional vs. Bidirectional Models

RNN RNN RNN

RNN RNN RNN

<s> read a

read a book

Unidirectional

RNN RNN RNN

RNN RNN RNN

<s> read a

read a book

Bidirectional

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Masked Language Modelling
• Mask out k% of the input words, and then predict the masked words (Usually k = 15%). Example :

• Too little masking: Too expensive to train
• Too much masking: Not enough context

• The model needs to predict 15% of the words, but we don’t replace with [MASK] 100% of the time.
Instead:
○ 80% of the time, replace with [MASK]

○ Example : like going to the park → like going to the [MASK]

○ 10% of the time, replace random word
○ Example : like going to the park → like going to the store

○ 10% of the time, keep same
○ Example : like going to the park → like going to the park

I like going to the [MASK] in the evening

park

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Next Sentence Prediction
• To learn relationships between sentences, predict whether Sentence B is actual

sentence that proceeds Sentence A, or a random sentence.

• Important for many important downstream tasks such as Question Answering (QA) and
Natural Language Inference (NLI)

• How to choose sentences A and B for pretraining?
• 50% of the time B is the actual next sentence that follows A (labeled as IsNext)
• 50% of the time it is a random sentence from the corpus (labeled as NotNext)

Input = [CLS] I enjoy read [MASK] book ##s [SEP]
I finish ##ed a [MASK] novel [SEP]
Label = IsNext

Input = [CLS] I enjoy read ##ing book [MASK] [SEP]
The dog ran [MASK] the street [SEP]
Label = NotNext

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Input Representation
• Use 30,000 WordPiece vocabulary on input.
• For a given token, its input representation is constructed by summing the token

embeddings, the segmentation embeddings and the position embeddings.

Source of Image : BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019)

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Training Details

• Data: Wikipedia (2.5B words) + BookCorpus (800M words)
• Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
• Training Time: 1M steps (~40 epochs)
• Optimizer: AdamW, 1e-4 learning rate, linear decay
• BERT-Base: 12-layer, 768-hidden, 12-head
• BERT-Large: 24-layer, 1024-hidden, 16-head
• Trained on 4x4 or 8x8 TPU slice for 4 days

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Fine-Tuning Procedure

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-Training Encoder-Decoder Models
• For encoder-decoders, we could do something like language modeling, but where a

prefix of every input is provided to the encoder and is not predicted.

h1, …, hT = Encoder (x1, …, xT)

hT+1, …, hT+M = Decoder (y1, …, yi-1, h1, …, hT)

P(yi | y<i, h1:T) = Softmax(Whi + b)

The encoder portion benefits from bidirectional
context; the decoder portion is used to train the whole
model through language modeling. x1, …, xT

y1, …, yT+M

y2, …

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-Training Encoder-Decoder Models
• How can we pre-train a model for P(y | x)?

• Requirements:
1. should use unlabeled data
2. should force a model to attend from y back to x

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-Training BART (Bidirectional and Auto-Regressive
Transformers)

• Several possible strategies for corrupting a sequence are explored in the
BART paper.

Infilling is longer
spans than masking

Lewis et al. (2019), “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-Training BART
• Sequence-to-sequence Transformer trained on this data: permute/make/delete tokens,

then predict full sequence autoregressively.

Lewis et al. (2019), “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

BERT vs. BART

• BERT: only an encoder, trained with masked
language modeling objective. Cannot
generate text or do Seq2Seq tasks (in
standard form).

B D

A _ C _ E

• BART: consists of both an encoder and a
decoder. Can also use just the encoder
wherever we would use BERT.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

BART for Summarization
• Pre-train on the BART task: take random chunks of text, noise them according to the

schemes described, and try to “decode” the clean text

• Fine-tune on a summarization dataset: a news article is the input and a summary of that
article is the output (usually 1-3 sentences depending on the dataset)

• Can achieve good results even with few summaries to fine-tune on, compared to basic
seq2seq models which require 100k+ examples to do well

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

T5: Text-to-Text Transfer Transformer

Raffel et al. (2019), “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-Training T5
• Pre-training: similar denoising scheme to BART (they were released within a week of

each other in fall 2019)
• Input: text with gaps ; Output: a series of phrases to fill those gaps.

Raffel et al. (2019)

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pretrain

BERTBASE-sized
encoder-decoder

Transformer

Denoising

objective

C4 dataset

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE
Pretrain

Finetune

BERTBASE-sized
encoder-decoder

Transformer

C4 dataset

Denoising
objective

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE Benchmark

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE

CNN/DM

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder
Transformer

Denoising
objective

C4 dataset

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE

CNN/DM

SQuAD

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder
Transformer

Denoising
objective

C4 dataset

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE

CNN/DM

SQuAD

SuperGLUE

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder
Transformer

C4 dataset

Denoising
objective

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE

CNN/DM

SQuAD

SuperGLUE

WMT14 EnDe

WMT15 EnFr

WMT16 EnRo

Pretrain

Finetune

BASE
BERT -sized

encoder-decoder
Transformer

C4 dataset

Denoising
objective

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

GLUE

CNN/DM

SQuAD

SuperGLUE

WMT14 EnDe

WMT15 EnFr

WMT16 EnRo

Pretrain

Finetune Evaluate on

validation

step 750000

step 760000

step 770000

step 780000

BASE
BERT -sized

encoder-decoder
Transformer

C4 dataset

Denoising
objective

Instruction Tuning

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

https://tanmoychak.com/

GPT-5: Next Gen AI
OpenAI officially launched GPT-5, marking the biggest leap in artificial

intelligence since GPT-4.

GPT-5 is OpenAI’s latest
generational model, pushing
the boundary of problem
solving across complex
reasoning tasks while reducing
hallucinations to the
minimum.

Announced on
August 7, 2025

OpenAI Blog

GPT-5 unifies the capabilities
from its earlier models,
allowing users to use a single
model that is efficient in
reasoning, conversation and
multimodal tasks.

https://openai.com/index/introducing-gpt-5/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Where Do the Pre-trained Models Fail?

Reason: Most of their training data is not in instruction-output format

Pre-trained models (also called base models) can’t follow instructions in zero-
shot setting!!
Example with Llama-3-8B-base [The first sentence is the input prompt]

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

How to make ChatGPT ?
• Pre-Training

• This is the point where most of the reasoning power is infused in the model.
• Data – Billions of tokens of unstructured text from the internet

• Instruction Tuning
• Trains models to follow natural language instructions
• Data – Several thousand (Task/Instruction, Output) examples

• Reinforcement Learning from Human Feedback
• Show the output(s) generated by models to humans/reward model
• Collect feedback in the form of preferences.
• Use these preferences to further improve the model
• Data – Several thousand (Task, instruction) pairs and a reward model/

preference model/human

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

But Instruction-tuning is Not Enough - Why?

• Question: What’s the best way to lose weight quickly?

What to say? What not to say?

Reduce carb intake, increase fiber &
protein content, increase vigorous
exercise

You should stop eating entirely for a few
days

Instruction tuning can make this happen But can’t prevent this from happening

Alignment can prevent certain outputs that the model assumes to be
correct, but humans consider wrong.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

How to make ChatGPT ?
• Pre-Training

• This is the point where most of the reasoning power is infused in the model.
• Data – Billions of tokens of unstructured text from the internet

• Instruction Tuning
• Trains models to follow natural language instructions
• Data – Several thousand (Task/Instruction, Output) examples

• Reinforcement Learning from Human Feedback
• Show the output(s) generated by models to humans/reward model
• Collect feedback in the form of preferences.
• Use these preferences to further improve the model
• Data – Several thousand (Task, instruction) pairs and a reward model/

preference model/human

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Why Do We Need Instruction Training?

To bridge the gap between
Observed behavior: Next word prediction

Desired Behavior: Instruction Following

To allow behavior modification during
inference

Meta-instruction: Answer all questions as
William Shakespeare would.

Catch The instruction-tuning data should be diverse and
have high coverage

Content Credit: Instruction Tuning for Large Language Models: A Survey

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Training Loss

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

How to train? (Encoder-Decoder Models)
• Given (instruction, output) pairs

• Tokenized 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑖1, … , 𝑖𝑚 𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑜1, … , 𝑜𝑛)

Transformer Encoder

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

𝑜1 𝑜2 𝑜3 𝑜4

𝑜1 𝑜2 𝑜3 𝑜4 < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| >

𝑅 𝜃 = ෍

𝑗=0

𝑛

log 𝑝𝜃(𝑜𝑗+1|𝑜1:𝑗, 𝑖1:𝑚)

𝑜5 = < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| >

Transformer Decoder

BOS

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

Cross-attention

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

How to train? (Decoder-only models)
• Given (instruction, output) pairs

• Tokenized 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑖1, … , 𝑖𝑚 𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑜1, … , 𝑜𝑛)

Transformer Decoder

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑜1 𝑜2 𝑜3 𝑜4

𝑜1 𝑜2 𝑜3 𝑜4 < |𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡| >

𝑅 𝜃 = ෍

𝑗=0

𝑛

log 𝑝𝜃(𝑜𝑗+1|𝑜1:𝑗, 𝑖1:𝑚)

𝑜𝑛+1 = < 𝑒𝑛𝑑𝑜𝑓𝑡𝑒𝑥𝑡 >
𝑜1:𝑗 = 𝑜1, … , 𝑜𝑗

𝑖1:𝑚 = 𝑖1, … , 𝑖𝑚

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

But is response-only loss optimal for decoder-only
models?
• WHY zero-out loss on prompt tokens and backpropagate only on response tokens for

decoder-only models – where both prompt and response are processed by the same
decoder?
• Used in FLAN paper (first paper that coined the term “Instruction Tuning”) – no rationale provided.

Thereafter used widely till date – unquestioned!

• Seems to be a direct adaptation from SFT loss for classification tasks …

• Isn’t the conventional loss kind of like teaching a child how to given answers to questions but not
teaching how to understand the questions themselves!

• So, is there more to it?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Weighted Instruction Tuning (WIT)
• Consider loss on both prompt and

response tokens and weight them
based on different factors (training
data, model properties, downstream
task, etc.)

TACL’25

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Key Takeaways
• The conventional instruction tuning (zeroing out the loss on prompt tokens and

backpropagating only on response tokens) is sub-optimal.

• Low-to-moderate prompt token weights (0< 𝜆𝑝 <0.6) coupled with a moderate-to-high
response token weight (0.6< 𝜆𝑟 <1) significantly boosts generalization.

• Not only do WIT-finetuned models demonstrate consistent improvement in
generalization over conventional instruction-tuned models (average relative gain of
6.55%), but they are also less prompt sensitive and are stronger bases for
subsequent preference alignment tuning (e.g., DPO).

• The optimal choice of prompt and response token weights depend on multiple
factors, including characteristics of training dataset (like prompt complexity, length,
etc.), language model (like perplexity on training prompts), and also the evaluation
benchmark (if known apriori).

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Getting the Data

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Where does the data come from?
• Human-crafted

• Flan-2021
• Transforms NLP benchmarks into natural language input-output pairs.

Credit: The Flan Collection: Designing Data and Methods
for Effective Instruction Tuning

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

SuperNatural Instructions
Tasks contributed by NLP practitioners

Creative modification of existing NLP
tasks

Synthetic tasks that can be
communicated in few sentences

Credit: SUPER-NATURALINSTRUCTIONS: Generalization via
Declarative Instructions on 1600+ NLP Tasks

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Synthetic Instruction-Tuning Data

• Cheap and easy to obtain
• Often better quality than human-crafted data.

Use a pre-trained LM to
generate synthetic

task/instruction as well
as output.

• Self-Instruct
• Evol-Instruct
• Orca
• Instruction Back-translation

We will look at 4 popular
approaches for synthetic

data generation for
instruction tuning:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Self-Instruct
• Given:

• Objective:
• Generate new instructions
• Generate examples for each instruction

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

The Self-Instruct Process – Instruction Generation

Synthetically-
Generated
 instructions

Sample 8

Similarity with
existing

Instructions <
threshold

yes

Pre-trained
LLM such as

GPT-3

Generated
Instructions

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

The Self-Instruct Process – Classification Task
Identification

Can the following task be regarded as a classification task with finite output labels?

Task: Given my personality and the job, tell me if I would be suitable.
Is it classification? Yes

Task: Give me an example of a time when you had to use your sense of humor.
Is it classification? No
.
.
.
Task: {instruction for the target task}
Is it classification?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

The Self-Instruct Process – Instance Generation
• Given an instruction, generate instances that follow the instruction.

• In-context learning can be used to generate instances for an instruction

• Input-First (e.g., sort an array)
Come up with examples for the following tasks. Try to generate multiple examples when possible.
If the task doesn’t require additional input, you can generate the output directly.

Task: Which exercises are best for reducing belly fat at home?
Output:
- Lying Leg Raises
- Leg In And Out
- Plank
- Side Plank
- Sit-ups

Task: {Instruction for the target task}

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

The Self-Instruct Process – Instance Generation - II

Given the classification task definition and the class labels, generate an input that corresponds to each of
the class labels. If the task doesn’t require input, just generate the correct class label.

Task: Classify the sentiment of the sentence into positive, negative, or mixed.
Class label: mixed
Sentence: I enjoy the flavor of the restaurant but their service is too slow.
Class label: Positive
Sentence: I had a great day today. The weather was beautiful and I spent time with friends.
Class label: Negative

Task: {instruction for the target task}

Output First

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Self-Instruct: The complete pipeline

Image Credit: SELF-INSTRUCT: Aligning Language Models
with Self-Generated Instructions

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Evaluation results on unseen tasks from SUPERNI

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Human evaluation on 252 instructions

Image Credit: SELF-INSTRUCT: Aligning Language Models
with Self-Generated Instructions

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Evol-Instruct

Motivation:
Most of the instruction datasets
contain only simple instructions.
LLMs can be used to make
instructions more complex.

Instruction Evolver
An LLM that uses prompts
to evolve instructions.

Instruction Eliminator
Checks whether the
evolution fails.
- Non-informative
responses

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Instruction Evolver – In-Depth Evolution
• Add constraints
• Deepening
• Concretizing
• Increase Reasoning

I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex
version to make those famous AI systems
(e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be
understood and responded by humans.
…
You SHOULD complicate the given prompt using the following
method: Please add one more constraints/requirements into
#Given Prompt#

#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Instruction Evolver – In-Breadth Evolution
• Enhance

• Topic Coverage
• Skill Coverage

I want you act as a Prompt Creator. Your goal is to draw inspiration from the
#Given Prompt# to create a brand new prompt. This new prompt should
belong to the same domain as the #Given Prompt# but be even more rare.
The LENGTH and difficulty level of the #Created Prompt# should be similar
to that of the #Given Prompt#.
The #Created Prompt# must be reasonable and must be understood and
responded by humans. ‘#Given Prompt#’, ‘#Created Prompt#’, ‘given prompt’
and ‘created prompt’ are not allowed to appear in #Created Prompt#.

#Given Prompt#:
<Here is instruction.>
#Created Prompt#:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Orca
• How can we improve the information content in the response?

• Add a system instruction from a diverse instruction set including chain-of-thought,
reasoning steps, explain like I’m five, being helpful and informative, etc.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Instruction Back-Translation

Gather Data:

• Unlabeled text
from Clueweb
(Overwijk et al.,
2022).

• 3,200 pieces of
human-written
(instruction,
response)
format data.

Back-Translation
Model Training:

• Use LLaMA
(Touvron et al.,
2023b).

• Train on seed
data, taking
response as
input, generating
instruction as
output.

Generate Raw
Data:

• Feed unlabeled
texts into the
trained back-
translation
model.

• Produce raw
(instruction,
response)
format data.

Evaluation
Model:

• Train another
LLaMA-based
model.

• Assess the
quality of
(instruction,
response) pairs
generated in
Step 3.

Filter & Fine-
Tune:

• Remove low-
quality pairs.

• Use remaining
data for fine-
tuning large
language
models (LLMs).

Content Credit: Instruction Tuning for Large
Language Models: A Survey

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Popular Instruction-Tuned Models on Known Datasets
• Flan-T5 (11B)

• Fine-tuned T5-11B on Flan dataset

• Alpaca (7B)
• Finetuned LLaMa-7B on synthetic dataset generated from text-davinci-003 generated using Self-

Instruct

• WizardLM (7B)
• Finetuned LLaMa-7B on on an instruction dataset generated from ChatGPT using Evol-Instruct .

• Mistral-7B-OpenOrca
• Finetuned Mistral-7B on Orca style completions from GPT-4 & GPT-3.5

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Instruction Tuned Models are Quick Learners

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty
Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Main Takeaways

Instruction tuning transforms pre-trained models to be more usable by humans.

Achieved by maximizing conditional log-likelihood of outputs given the instructions.

Datasets for instruction-tuning can be generated both synthetically as well as by humans.

Instruction-tuned models can quickly learn a task with limited data.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

	Default Section
	Slide 1
	Slide 2
	Slide 3: Where We Were: Pre-trained Word Vectors
	Slide 4: Pre-trained Word Vectors -> Pre-trained Models
	Slide 5: Pretraining for Three Types of Architectures
	Slide 6
	Slide 7: Background - Bidirectional Context
	Slide 8: Motivation
	Slide 9: Unidirectional vs. Bidirectional Models
	Slide 10: Masked Language Modelling
	Slide 11: Next Sentence Prediction
	Slide 12: Input Representation
	Slide 13: Training Details
	Slide 14: Fine-Tuning Procedure
	Slide 15: Pre-Training Encoder-Decoder Models
	Slide 16: Pre-Training Encoder-Decoder Models
	Slide 17: Pre-Training BART (Bidirectional and Auto-Regressive Transformers)
	Slide 18: Pre-Training BART
	Slide 19: BERT vs. BART
	Slide 20: BART for Summarization
	Slide 21: T5: Text-to-Text Transfer Transformer
	Slide 22: Pre-Training T5
	Slide 23: Pretrain
	Slide 24: Finetune
	Slide 25
	Slide 26: Finetune
	Slide 27: Finetune
	Slide 28: Finetune
	Slide 29
	Slide 30: Finetune
	Slide 31: Finetune

	Default Section
	Slide 1
	Slide 2
	Slide 3: Where Do the Pre-trained Models Fail?
	Slide 4: How to make ChatGPT ?
	Slide 5: But Instruction-tuning is Not Enough - Why?
	Slide 6: How to make ChatGPT ?
	Slide 7: Why Do We Need Instruction Training?
	Slide 8
	Slide 9: How to train? (Encoder-Decoder Models)
	Slide 10: How to train? (Decoder-only models)
	Slide 11: But is response-only loss optimal for decoder-only models?
	Slide 12: Weighted Instruction Tuning (WIT)
	Slide 13
	Slide 14: Key Takeaways
	Slide 15
	Slide 16: Where does the data come from?
	Slide 17: SuperNatural Instructions
	Slide 18: Synthetic Instruction-Tuning Data
	Slide 19: Self-Instruct
	Slide 20: The Self-Instruct Process – Instruction Generation
	Slide 21: The Self-Instruct Process – Classification Task Identification
	Slide 22: The Self-Instruct Process – Instance Generation
	Slide 23: The Self-Instruct Process – Instance Generation - II
	Slide 24: Self-Instruct: The complete pipeline
	Slide 25: Evaluation results on unseen tasks from SUPERNI
	Slide 26: Human evaluation on 252 instructions
	Slide 27: Evol-Instruct
	Slide 28: Instruction Evolver – In-Depth Evolution
	Slide 29: Instruction Evolver – In-Breadth Evolution
	Slide 30: Orca
	Slide 31: Instruction Back-Translation
	Slide 32: Popular Instruction-Tuned Models on Known Datasets
	Slide 33: Instruction Tuned Models are Quick Learners
	Slide 34: Main Takeaways

