Transformer

Tanmoy Chakraborty
Associate Professor, IIT Delhi
https://tanmoychak.com/

LCS¢

LABORATURY FOR
UUUUUUUUUUUUUUUUUUUUUUU

|s Attention All We Need?

Recap: Attention

14 (/

/
@ @ q1 42
P

-

f 1 1 1
i1 Ti2 L33 Yi,0 Yi,1l Yi2 Yi3
mignon chiot Un <START> A cute puppy

ST | — [T

[e—

Introduction to LLMs

Tanmoy Chakraborty

Recap: Attention

L lz a3 Ui 3

softmax |

Ti1 Li2 T3 Yi,0 Yi1l Yi,2 Yi3
mignon chiot Un <START> A cute puppy

Introduction to LLMs

Tanmoy Chakraborty

Recap: Attention

/\/ k
(87
\/L 'Z ., Ui,3 * If we have at even need recurrent
- softmax connections?
6# A e Can we transform our RNN into a purely
VOO, O attention-based model?
! . .
H @ @ * Attention can access all time steps
simultaneously, potentially doing everything that
! T T recurrence can, and even more. However, this
H @ H % H = H approach presents so
The encoder lacksl'eé
(S B | t 7]
Ti1 Tio Tis yz 0 yz 1 Yi2 i3 wat " .
A1 TR

mignon chiot Un <START> A cute puppy

Introduction to LLMs \# : 1= ﬂ Tanmoy Chakraborty

i | Wy} €17 g
Self-attention W
W\ Q wv

this is not a recurrent model!

but still weight sharing:
ht — O'(W.Tt + b)

shared weights at all time steps

1 .1 s 1 (or any other nonlinear function)

Introduction to LLMs * _| Tanmoy Chakraborty

Self-Attention

e 2 U3 this is not a recurrent model!
/ / / but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs * _| Tanmoy Chakraborty

Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

e 2 U3 this is not a recurrent model!
/ / / but still weight sharing:

hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

", ..
/—3 this is not a recurrent model!

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
ki = k(hy) (just like before) — e.g., kt = Wihy

", ..
/—3 this is not a recurrent model!

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

]{1 g1 U1 kQ q2 U2]C3 g3 U3
— — —

Nt/ Nt/ Nt/

h1 ho hs
S

t t f

I1 Lo I3

Introduction to LLMs

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy

ki = k(hy) (just like before) — e.g., kt = Wihy

this is not a recurrent model!
but still weight sharing:

ht — O'(W.Tt + b)

shared weights at all time steps

(or any other nonlinear function)

Tanmoy Chakraborty

Self-Attention

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy v
ki = k(h¢) (just like before) — €.g., kt = Wihy o~
gt = q(ht) e.g., ¢ = Wyhy v

kp @ e ka 42 2 ks 43 v this is not a recurrent model!

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

€ € €
.- .- 1 ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
IW\L ki = k(hy) (just like before) e.g., ky = Wihy
g = q(ht) e.g., gt = Wyhy
kl qi ﬂ kQ g2 2]C3 g3 ﬂ

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

€1,1 €1, €1,3 e = f
’ ’ ’ ve = v(ht) before just had v(hy) = hy, now e.g. v(hy) = W, hy
IW\L ki = k(hy) (just like before) — e.g., kt = Wihy
¢ = q(hy) e.g., g = Wohy
kl qi ﬂ kQ g2 2]C3 g3 ﬂ

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

F
=

| softmax | el =q - k
€1,1 €1,2 €1.3

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy
IW\L ki = k(hy) (just like before) — e.g., kt = Wihy
gt = q(ht) e.g., ¢ = Wyhy
]{1 g1 U1 kQ G2 U2]C3 43 U3
|| ||]

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

I_& . 2_, oy = exp(et)/ Zexp(el,t’)

tl
| €t —4q1- ki

| softmax
€1,1 €1,2 €1.3

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy
IW\L ki = k(hy) (just like before) e.g., ky = Wihy

gt = q(ht) e.g., ¢ = Wyhy
kl Qﬂ& kQ QQﬂ]C3 QSE

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

I_& . 2_, oy = exp(et)/ Zexp(el,t’)

tl
| €t —4q1- ki

| softmax
€1,1 €1,2 €1.3

ve = v(hy) before just had v(h;) = hs, now e.g. v(hy) = W,hy
IW\L ki = k(hy) (just like before) e.g., ky = Wihy

gt = q(ht) e.g., ¢ = Wyhy
kl Qﬂ& kQ QQﬂ]C3 QSE

Nt/ \t/ Nt/ but still weight sharing:
I ha hs he = o(Wze +b)

shared weights at all time steps

this is not a recurrent model!

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

C———,

/ A A /n
oq Q3 o]+ = exple expl(e; ¢
L- . R Lt p(l,t)/; p(er)
| softmax | el = qr - ky
e e e ’
1,1 1,2 1,3 vy = v(ht) before just had v(h;) = hy, now e.g. v(hy) = Wyhy
I [\%% \L ki = k(hy) (just like before) .8, ke = Wihy
qt = Q(ht) e.g., ¢ = Wyhy
kp @ ﬂ ka 92 ﬂ ks 43 |Us this is not a recurrent model!
Nt/ N\t / Nt/

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs _| Tanmoy Chakraborty

Self-Attention

<
@':@\ O a; = Zal,t’Ut

/ A A /“ ¢
oq Q3 o]+ = exple expl(e; ¢
L- . R Lt p(l,t)/; p(er)
| softmax | el = qr - ky
e e e ’
1,1 1,2 1,3 vy = v(ht) before just had v(h;) = hy, now e.g. v(hy) = Wyhy
I [\%% \L ki = k(hy) (just like before) .8, ke = Wihy
qt = Q(ht) e.g., ¢ = Wyhy
kp @ ﬂ ka 92 ﬂ ks 43 |Us this is not a recurrent model!
Nt/ N\t / Nt/

but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs \ _| Tanmoy Chakraborty

Self-Attention

/ A A /“ t
o . &3 o+ = exple exp(e;
L- s | Lt p(lat)/tZ p(ert)
| softmax | s =qp- kt
6 6 6 ’
” 4 - vy = v(ht) before just had v(h;) = hy, now e.g. v(hy) = Wyhy
I[\%%N kt — k(ht) (jUSt like before) €.g., kt = tht

qr = Q(ht) €.g., 4t = tht
this is not a recurrent model!

ky 1|01 kg 2(U3 ks 03|03
Nt/ \t7/ but still weight sharing:
hl hQ h3 ht = O'(W.Tt + b)

shared weights at all time steps

t t f (or any other nonlinear function)

Introduction to LLMs \ _| Tanmoy Chakraborty

Self-Attention

~ a]

(Mt

| softmax |

€1,1 €1,2 €1,3 :>

Introduction to LLMs

Self-Attention

/1 f /
L | M| o

i

| softmax |

€1,1 €1,2 €1.3

1 g1 ko QQM ks (IS
\T/ \T/ \T/ kl Q1M k2q2w k3q3

hy By ha N\t / Nt/ Nt/
hl h2 h3
t t t t t t

Introduction to LLMs * / o Tanmoy Chakraborty

Self-Attention

ai

T

@N

/1 t /@
L | M| o
i
| softmax |
€1,1 €1,2 €1.3

Introduction to LLMs

self-attention “layer”

ttt tttr 1t

Self-Attention

ai

T

<
@";Q\ O
‘ 831 ' Q3 k1 91w ko Q2w ks QSE

— \t/ Nt/ Nt/

| softmax |

€1.1 -1 . C1.3 :> a1 ao a3
self-attention “layer”

& bttt

Introduction to LLMs

Self-Attention

ai
T
Cs———
¥ ¥ 1 R A A A
/ /
L& ' 3]€1 Q1H k‘g QQH k'3 qs3
| softmax _>| \ T / \ T / \ T
€1,1 €1.2 €1.3 ai as as
N T ! !]

t 1 Pt

Introduction to LLMs

Self-Attention

aq .
4 .
Cs———
¥ ¥ 1 R A A A
/ /
L& ' 3]€1 Q1H k‘g QQH k'3 qs3
| softmax _>| \ T / \ T / \ T
€1,1 €1.2 €1.3 ai as as
N T ! !]

t 1 Pt

Introduction to LLMs

A
Self-Attention Keep repeating

aq .
4 .
Cs———
¥ ¥ 1 R A A A
/ /
L& ' 3]€1 Q1H k‘g QQH k'3 qs3
| softmax _>| \ T / \ T / \ T
€1,1 €1.2 €1.3 ai as as
N T ! !]

t 1 Pt

Introduction to LLMs

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

Positional Encoding - Motivation

* Problem : Self-attention processes all the elements of a sequence in parallel without
any regard for their order.

/x
* Example : the sunrises inthe east Bag of Words

* Permuted version : rises in the sun the east . .
in, the, rises, east,

the eastrises in the sun

* Self-attention is permutation invariant.

* In natural language, it is important to take into account the order of words in a sentence.

* Solution : Explicitly add positional information to indicate where a word appears in a
sequence

Introduction to LLMs \ _| Tanmoy Chakraborty

Sinusoidal Positional Encoding

* Helps it determine the position of each word (absolute positional information), or the
distance between different words in the sequence(relative positional information)

* The frequency decreases along the encoding dimension.
PE(pos,2i) = sin(pos/10000%"/ 4
PE(pos 2i+1) = cos(pos/10000%/ i)

Will be discussed in
the next module!

"y

‘ J!I & <
LA AE LAY

.—P

l “'"
Yo
| v

Encoding
Dimension

Position

Introduction to LLMs w _| Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

| A\
i@thﬂt we're ful&’dependingo%ttention n vt collch e’b eficial to include more than one time step.
1
)

oo oey ﬁ'%’—ﬁ

AG

. _

Introduction to LLMs * / o Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

ki o1 kg 92 U3 ks a3|vs
/

\t Nt/ Nt/
hq ho hs
1 1 f
I Lo I3

Introduction to LLMs * _| Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

/ \ lzal\

ki1 @1 ’01 Uz 3
Nt/ \ T / '\ T / Due to the softmax function, this will be heavily
influenced by a single value.
hq ho hs
t t f
I Lo I3

Introduction to LLMs \ _| Tanmoy Chakraborty

Multi-Head Attention

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

a2
a; = Zal,t’vt
t
1 /fg q2

ki 41|U V2 k3 Q43 U3
Nt/ Nt/ Nt/ Due to the softmax function, this will be heavily
influenced by a single value.
hi hs h et = qr- ke
t t f
L1 L3 L3

It's challenging to clearly specify that you want two distinct
elements, like the subject and object in a sentence.

Introduction to LLMs Gk LCS: Tanmoy Chakraborty

Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

Introduction to LLMs * _| Tanmoy Chakraborty

Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

ki1 91,1011 ko G2,1 V21 ksa §3,1 V3.1

"t/ At/ ANt/

h ho hs

Introduction to LLMs I _| Tanmoy Chakraborty

Multi-Head Attention

Solution: Use multiple keys, queries, and values for each time step

(13 3 . .
full attention vector formed by concatenation:
a1
a2 = | (22
= az,3

compute weights independently for each head

erti =qri- K

/_\“_
ki1 91,1011 ko G2,1 V21 ksa §3,1 V3.1

Nt/ ANt/ ANt/ B

Introduction to LLMs \ L | Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs -\ _| Tanmoy Chakraborty

Self-Attention Is “Linear”

a _
! kt = Wihy qt — tht ”U

T
<
= .:_—_ag ., CLe = ke /‘\

| softmax | 4
€1,1 €1,2 €1.3 a; — Oél,t’lit — E Oél,thht = W, Qe
t ” t ——
—

linear transformation
k1 (11@ ko QQM ks QS

Problem: Every self-attention layeris a

non-linear weights

5 h h linear transformation of the previous layer
/ ' ° ’ with non-linear weights.

f t 1

I o xrs

Introduction to LLMs \ _| Tanmoy Chakraborty

Position-wise Feed-Forward Networks
g

self-attention “layer”

e N

k1 quw ko QQM ks q;; . Sold(lo Makethe\mod/more expresange is by

\t/ t / Nt/ alternafipg use of self- “ttention and non-linearity.
h> h3 h2 4
[—F —f \ . Non-l?eanty Is incorporated by means of a feed-
L a1 L a2 U3 forward network which consists of two linear
t f f transformations with a ReLU activation in between.
self-attention “layer”
tot tot FFN(z) = mW(O’_‘,_——-fﬂwl o)W + b2
B @i on] ko 92 (v * The same non-linearity isudtilized across various
Nt/ Nt/ " :
o1 = positions but they differ from layer to layer.
1 2

Introduction to LLMs * Tanmoy Chakraborty

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs i N _| Tanmoy Chakraborty

. ~ [-
Self-attention can see the future} % - 71T
% - L]
% =—=
b Ys Ya 0,1 ’;
f f f A crude self-attention “language model”:
h h s
! ! ! In practice, there would be several
ai a2 a3 alternating self-attention layers and

$ $ t position-wise feedforward networks

self-attention “layer” N

ttt ttt tt

k 91W]fg Q2w k‘3 qs

\E .
=
=
W\

P

1
\

Introduction to LLMs

Self-attention can see the future!

Y2 \ U3 \ U4
t t t A crude self-attention “language model”:
hi hs \ h
f “‘ ! “‘ ! In practice, there would be several
a \‘ 2 \‘ as alternating self-attention layers and
\ \ position-wise feedforward networks

Big problem: self-attention at step 1 can look at the value
at steps 2 & 3, which is based on the inputs at steps 2 & 3

Xt/ Xt/ "‘\ t At test time (when decoding), the inputs at steps 2 & 3 will
\ \ be based on the output at step 1...

hl \ hl \ hl

1 v\ 169 3

t \ 1 \1 ...which requires knowing the input at steps 2 & 3
| |

Y1 Y2 Y3

Introduction to LLMs _| Tanmoy Chakraborty

: Ay %
Masked Attention a, %M
At test time (when decoding), t & 3 will W} L.

A crude self-attention “language model”:

92‘ QS‘ U4 ...which requires knowing the inp |
ty t\ t 3
h% \ h% \ h% Must allow self-attention into t

\ \
t o t o $...but not into the future MSE

\ \ 4
ai az as 1

‘ ¢t
| \ T \ T Easy solution: @ dod ’)
e -k ?ﬂb -
s -attention layer” L !

{ql-kt ifl >t Sk q/
€Lt =

—00 otherwi

&
—
—
—
—
—

in practice: \

just replace exp(e; +) Wi‘[hl Oifl <t

inside the softmax

Introduction to LLMs _| Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Encoder

Posit
Enco

Source of Image : Attention is all you need
(Vaswanital., 2017)

Qutput
Probabilities

| Softmax)

t

|l Linear)

I
Add & Norm

Feed
Forward 7

Multi-Head
b Attention

~

[Add & Norm

Feed ‘
Forward

L

| Add & Norm

Multi-Head
Attention

2)

\
Dlnal ®_(?'}\
ling
Input
Embedding

ﬁ

| Add & Norm

Masked
Multi-Head
Attention

At

J

s

Qutput
Embedding

I

Qutputs
(shifted right)

Positional
Encoding

Decoder

Tanmoy Chakraborty

Transformer
Architecture

Position embeddings are addedto
each word embedding. Otherwise,
since we have no recurrence, our
model is unaware of the position of a
word in the sequence!

Introduction to LLMs

Qutput

Probabilities
| Softmax)
|
|l Linear)
r ™
| Add & Norm ==
Feed
Forward
-—
s I N | Add & Norm J=—
—{_Add & Norm J S ii-Head
Feed Attention
Forward T 7 7 Nx
j (J
Add & Norm
Nx I
~—| Add & Norm] Masked
Multi-Head Multi-Head
Attention Attention
At At
— I
\ . J
Positional Positional
. + + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Tanmoy Chakraborty

Transformer
Architecture

Residual connections, which mean
that we add the input to a particular
block to its output, help improve
gradient flow

Introduction to LLMs

Qutput

Probabilities
| Softmax)
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
— (——
L Add & Norm Je=,
~—| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
—] e/
\. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Tanmoy Chakraborty

Transformer
Architecture

A feed-forward layer on top of the
attention- weighted averaged value
vectors allows us to add more
parameters / nonlinearity

Qutput

Introduction to LLMs

Probabilities
| Softmax)
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
> Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
—] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Tanmoy Chakraborty

Qutput

Tl’a N SfO Fmer ProbaTbilities

. [Softmax |
Architecture i
|l Linear)
& ™
| Add & Norm ==
Feed
Forward
-
s I N | Add & Norm J=—
> Add & Norm) Multi-Head
Feed Attention
Forward N
We stack as many of these , 2 }F J)
) S——
Transformerblocks on top of each [(Add & Norm Je=
. —> Nx | __("Add & Norm) .
other as we can (bigger models are - Masked
) | Multi-Head Multi-Head
generally better given enough data!) HEHan Attention
At At
k_ Y, .)
Positional o N Positional
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Introduction to LLMs - x| Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Qutput

Probabilities
| Softmax)
|
| Linear |
r ™
| Add & Norm ==
Feed
Forward
|
s I N | Add & Norm J=—
—{_Add & Norm J S ii-Head
Feed Attention
Forward T 7 7 Nx
j (J
Add & Norm
Nx I
~»| Add & Norm] Masked
Multi-Head Multi-Head le—
Attention Attention
At At
— I
\ . J
Positional Positional
. + + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Moving onto the decoder, which takes
in English sequences that have been
shifted to the right (e.g., <START>
schools opened thein

Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Qutput

Probabilities
| Softmax)
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head |,
Attention Attention
At At
—] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

We first have an instance of masked
self attention. Since the decoder is
responsible for predicting the English
words, we need to apply masking as
we saw before.

Tanmoy Chakraborty

Qutput
Probabilities

Transformer
. [Softmax |
Architecture ——

Linear

& ™
| Add & Norm Je—
Feed
Now, we have cross attention, which i
—
connects the decoder to the encoder { \] (Add & Norm
by enablingitto attend over the S) Muti-Head
o . Feed Attention
encoder’s final hidden states. Eorward 5 Nix
j (Je~
Add & Norm
Nx I
~>| Add & Norm) Maskod
Multi-Head Multi-Head
Attention Attention
_t At
— \ —
Paositional Positional
. & 4+ :
Encoding ?_® Encoding
Input Output
Embedding Embedding
Source of Image : Attention is all you need Inputs Outputs

(Vaswani et al., 2017)

Introduction to LLMs

(shifted right)

Tanmoy Chakraborty

Transformer
Architecture

Introduction to LLMs

Qutput

Probabilities
| Softmax) —
1
| Linear |
'y ™
| Add & Norm =
Feed
Forward
| I
s I N | Add & Norm J=—
> Add & Norm Multi-Head
Feed Attention
Forward T 7 7 Nx
j | J—
Add & Norm
Nx I
~—| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
—] e/
\, \. Y,
Positional Positional
. =} + .
Encoding (4)_® Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

After stacking a bunch of these
decoder blocks, we finally have our
familiar softmax layer to predict the
next English word.

Tanmoy Chakraborty

Qutput

Tra N SfO rmer ProbaTDilities

Reduces covariance shift and
makes the system stable

. | Softmax)
Architecture T
|l Linear)
& ™
| Add & Norm ==
Feed
Forward
—
s I N | Add & Norm =<
—{_Add & Norm J ~it-Head
: 1 -re Feed Attention
Adding non-linearities Eorward 5 Nix
j (J~
Add & Norm
Nx I
; : ~—>| Add & Norm] Maskod
Allows querying multiple Multi-Head Muiti-Head
positions at each layer AL Attention
At LU
— J/ . p—
. . . Positional Positional
Adds positional information ——Encoding ®—(J{> (?—@ Encoding
Input Output
Embedding Embedding
Inputs Qutputs
Source of Image : Attention is all you need (Vaswani etal., 2017) (shifted right)

Introduction to LLMs

Prevents attention lookups into
the future while decoding

Tanmoy Chakraborty

Layer normalization

* Mainidea: Batch normalization is quite beneficial, but it's challenging to apply with
sequence models. The varying lengths of sequences make it difficult to normalize across

a batch. Sequences can be very long, which often results in smaller batch sizes.

* Solution: Layer normalization

d-dimensional vectors
5 +— for each sample in batch different dimensions of a

Jdi ar,ag,...,a
N1 1 1 ./ | &
M:EZ% o= EZ(G@_U)Q M:gzaj 0= 32(%“#)2
P i—=1 /' i=1 i=1
1-dim
a— [

I
v Layer Norm

s —
a; =~ —Fy 48 a
o Batch Norm

Tanmoy Chakraborty

Introduction to LLMs

From Self-Attention to Transformers

* We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.

* To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Introduction to LLMs -\ _| Tanmoy Chakraborty

|
CL?T— 2L
Transformer Positional Encoding / =

(o
APEl) = ol [o

2V
B POS
PE(pOS,%’I:V;(';) o COS(];000027:/dm0del)

Ford, q4e =512, -

Positional encoding is a 512-dimensional vector

(Note: Dimension of positional encoding is same as dimension of the word embeddings)
[= a particular dimension of this vector

pos = position of the word in the sequence

Introduction to LLMs w -_| Tanmoy Chakraborty

1%
Example /@\)/

For example, for word w at position pos € [U, L — 1] in the input sequence
w = (wpy, -+, wy,_4), with 4-dimensional embedding e,,, and d,,,4e1 = 4, the operation would

- / (Y (Y 7
{D » (pos) pos) , (pos) (pos)}
Ew =€y + [8in , COS8 y8im| —— | ,co8| ————
_ 10000° 10000" 100002/4 1000024 /|

— ey + |sin (pos) Zcos (pos) , sin (%) T (%) |

-~

where the formula for positional encoding is as follows

PE(pos, 2i) = sin (pos) :

10000 %/ dmodet

—
. pos
PE(pos,2i + 1) = cos h) :
100002/ dmode

https://datascience.stackexchange.com/questions/51065/what-is-the-positional- %
encoding-in-the-transformer-model

Introduction to LLMs I _| Tanmoy Chakraborty

Pre-training Strategies

Tanmoy Chakraborty
Associate Professor, lIT Delhi
https://tanmoychak.com/

RA
COMPUTATIONAL SOCIAL SYSTEMS
I ——

OpenAl introduces GPT-OSS Mgt s 2095

An open weights model with strong reasoning performance openAl Blog

The 120B model is on par with
04-mini on reasoning
benchmarks , while running
efficiently on a single 80 GB

GPU —

They also released a 20b
model, which showssimilar
performance to that of 03-
mini. It only requires 16 GB of
memory and can easily run on
edge devices, making itideal
for local inference.
gpt-oss-120b gpt-oss-20b

A large open model designed to run A medium-sized open model
in data centers and on high-end that can run on most desktops
desktops and laptops. and laptops.

This is a huge deal, allowing people to run state-

of-the-art gpt models locally on their devices

ELMPD

Where We Were: Pre-trained Word Vectors
(bant— ndspowns / Skadrc.

e Start with pretrained word embeddings (no
context!)

y

A
* Learn how to incorporate context in an LSTM or I I I I I I

Transformer while training on the task. — Not pretrained

* The training data we have for our downstream Hiﬂ‘iﬂlﬂlﬂl
task (like question answering) must be sufficient i i i I i i

pretrained

to teach all contextual aspects of language. (word embeddings)

* Most of the parameters in our network are . the mavie was .
randomly initialized!

Introduction to LLMs ‘_I Tanmoy Chakraborty

Pre-trained Word Vectors -> Pre-trained Models

e All (or almost all) parameters in NLP networks are initialized

via pretraining. Y _
* Pretraining methods hide parts of the input from the el
model, and train the model to reconstruct those parts. I‘*I‘*I*’I*’I‘*I

i“"i i i i _ Pretrained jointly
* This has been exceptionally effective at building strong: - T

* representations of language i i i i i i

* parameter initializations for strong NLP A -
models. ... the movie was ...

* Probability distributions over language that we can sample
from

Introduction to LLMs

Tanmoy Chakraborty

Pretraining for Three Types of Architectures

The neural architecture influences the type of pretraining, and natural use cases.

Decoders

Encoders

Introduction to LLMs

Encoder-
Decoders

Language models! What we’ve seen so far.

Nice to generate from; can’t condition on future words

Gets bidirectional context — can condition on future!
How do we pretrain them?

Good parts of decoders and encoders?
What's the best way to pretrain them?

Tanmoy Chakraborty

BERT: Bidirectional Encoder Representations from Transformers

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Slides are adopted from Jacob Devlin

Introduction to LLMs o Tanmoy Chakraborty

Suf- Sepoeri B,

Background - Bidirectional Context

* Bidirectional context, unlike unidirectional context, takes into account both the left and

right contexts.
Target Word

Apple is my favourite fruit and | eat it all the time.
I | I |

Left Context Right Context

Target Word

Apple is my favourite brand for buying laptop and other gadgets.
I | I |

Left Context Right Context

Introduction to LLMs ‘_I Tanmoy Chakraborty

Motivation

* Problem with previous methods:
* Language models only use left context or right context.
* But language understanding is bidirectional.

* Possible Issue:
* Directionality is needed to generate a well-formed probability distribution.
 \WWords can see themselves in a bidirectional model.

Introduction to LLMs ‘_I Tanmoy Chakraborty

Unidirectional vs. Bidirectional Models

read a book read a book
| | | I I I

RNN > RNN > RNN RNN [1 RNN [| RNN

RNN » RNN » RNN RNN [| RNN [| RNN
| I | | I |
<s> read a <s> read a

Unidirectional Bidirectional

Introduction to LLMs

Tanmoy Chakraborty

Masked Language Modelling

* Mask out k% of the input words, and then predict the masked words (Usually k = 15% :
| like going to the [MASK] in the evening \

park ‘ ’ \
* Too little masking: Too expensive to train
* Too much masking: Not enqQugh context
* The model needs to predi f the time.

¢@ words, but we don’t replace with [}% 100%

Instead: - w
o 80% of the time, replace with [MASK] W HTTY s
o Example: like gomg to the park > like going to the [MASK]
)
© 10% of the tlme replace random word
o Example : like going-to-thejpe ike-gaing to the stor

Introduction to LLMs - Tanmoy Chakraborty

[
* To learn relationships between sé \

S A%

tence B ctual

Input = [CLS] enjyILread
| finish ##ed\a [MASK]
)

y J
Input = [CEST epibfddd ##ing book [MASKHSEP] ||)
The dog ranMASK] the's eet\[SEPi)

)
Label = NotNext 7 om 569 ‘o amsﬁ] LSEﬂ M{S for ﬁaﬂ

* Important for many important dowr\sig\gé]ﬂ tmon Answenng (QA) and
Natural Language Inference (NLI)

* How to choose sentences A and B for pretraining?

* 50% of the time B is the actual next sentence that follows A (labeled as IsNext)
* 50% of the time itis a random sentence from the corpus (labeled as NotNext)

Introduction to LLMs - Tanmoy Chakraborty

Input Representation

* Use 30,000 WordPiece vocabulary on input.

* For a given token, its input representation is constructed by summing the token
embeddings, the segmentation embeddings and the position embeddings.

Input [CLS] 1 my || dog is (cute] [SEP] || he (likes V play 1 ##ing W [SEP]

Token _ vl (W A | _ -~ 7

Embeddings “ E[CLS] Emy Edag Eis Ecute E[SEP] E;e ’EIikes Eplay E##ing E[SEF*]
A L b o= L -+ + + -+ o= +

Segment

Embedding_s_l EA EA EA EA EA EA EB EB EB EB EB

= ¢ + + + + + + + + + + +

Position

Embeddings EU E,l E2 E3 E4 ES p E6 E? I,ES E9 EIO

/ / / / /)/

Source of Image : BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019)

Introduction to LLMs ‘_I Tanmoy Chakraborty

Training Details

* Data: Wikipedia (2.5B words) + BookCorpus (800M words)
* Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
* Training Time: 1M steps (~40 epochs)

* Optimizer: Adam\W, 1e-4 learning rate, linear decay
/- BERT-Base: 12-layer, 768-hidden, 12—heaol
/° BERT.-Large:£4—lay_er, 1024—hidden, l6—head4_

* Trained on 4x4 or 8x8 TPU slice for 4 days

Introduction to LLMs - Tanmoy Chakraborty

Fine-Tuning Procedure

ﬁv Mask LM Mas‘k. LM \ /@ MAD Start/End Span\
= =

. num aww mum
e U e T - e) e ST -
s u|e » = = = ...
BERT - I .' .. .-h . s ’ BERT
s E | .. Ey E[SEP] E/ Ew Eiausi L Ex E[serq E, Ey

N AN N N N N
ST E s e —fr B B T B B

1
— - e
Tok1 | ... [T:"][[SEP]][mﬂﬂ ! [TokN][[SEP)][Toki]
Masked Sentence A P Masked Sentence B Question -~ Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Introduction to LLMs I ‘ Tanmoy Chakraborty

