
Transformer

Slides are adopted from Sergey Levine

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

Is Attention All We Need?

Slides by Sergey Levine

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

<START> A cute puppyUnmignon chiot

Recap: Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

<START> A cute puppyUnmignon chiot

Recap: Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Recap: Attention

<START> A cute puppyUnmignon chiot

• If we have attention, do we even need recurrent
connections?

• Can we transform our RNN into a purely
attention-based model?

• Attention can access all time steps
simultaneously, potentially doing everything that
recurrence can, and even more. However, this
approach presents some challenges:

The encoder lacks temporal dependencies at all!

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

shared weights at all time steps

Self-Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

shared weights at all time steps

Self-Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

shared weights at all time steps

Self-Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

self-attention “layer”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

self-attention “layer”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

self-attention “layer”

self-attention “layer”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

self-attention “layer”

self-attention “layer”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

self-attention “layer”

self-attention “layer”

Keep repeating

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Self-Attention to Transformers
• We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.
• To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one

4. Masked decoding how to prevent attention lookups into the future?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Self-Attention to Transformers
• We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called Transformers.
• To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one

4. Masked decoding how to prevent attention lookups into the future?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Positional Encoding - Motivation

• Problem : Self-attention processes all the elements of a sequence in parallel without
any regard for their order.
• Example : the sun rises in the east

• Permuted version : rises in the sun the east

 the east rises in the sun

• Self-attention is permutation invariant.

• In natural language, it is important to take into account the order of words in a sentence.

• Solution : Explicitly add positional information to indicate where a word appears in a
sequence

Bag of Words

in , the , rises , east ,
sun

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Sinusoidal Positional Encoding
• Helps it determine the position of each word (absolute positional information), or the

distance between different words in the sequence(relative positional information)
• The frequency decreases along the encoding dimension.

Position

En
co

di
ng

D

im
en

si
on

Will be discussed in
the next module!

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Self-Attention to Transformers
• We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.
• To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one

4. Masked decoding how to prevent attention lookups into the future?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention
Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention
Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention

Due to the softmax function, this will be heavily
influenced by a single value.

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention

Due to the softmax function, this will be heavily
influenced by a single value.

It's challenging to clearly specify that you want two distinct
elements, like the subject and object in a sentence.

Given that we're fully depending on attention now, it could be beneficial to include more than one time step.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention
Solution: Use multiple keys, queries, and values for each time step

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention
Solution: Use multiple keys, queries, and values for each time step

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Multi-Head Attention
Solution: Use multiple keys, queries, and values for each time step

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Self-Attention to Transformers
• We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.
• To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one

4. Masked decoding how to prevent attention lookups into the future?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention Is “Linear”

non-linear weightslinear transformation

Problem: Every self-attention layer is a
linear transformation of the previous layer

with non-linear weights.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Position-wise Feed-Forward Networks

• Solution : Make the model more expressive is by
alternating use of self-attention and non-linearity.

• Non-linearity is incorporated by means of a feed-
forward network which consists of two linear
transformations with a ReLU activation in between.

• The same non-linearity is utilized across various
positions but they differ from layer to layer.

self-attention “layer”

self-attention “layer”

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Self-Attention to Transformers
• We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.
• To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one

4. Masked decoding how to prevent attention lookups into the future?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-attention can see the future!

self-attention “layer”

A crude self-attention “language model”:

In practice, there would be several
alternating self-attention layers and
position-wise feedforward networks

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

self-attention “layer”

A crude self-attention “language model”:

In practice, there would be several
alternating self-attention layers and
position-wise feedforward networks

Big problem: self-attention at step 1 can look at the value
at steps 2 & 3, which is based on the inputs at steps 2 & 3

At test time (when decoding), the inputs at steps 2 & 3 will
be based on the output at step 1…

…which requires knowing the input at steps 2 & 3

Self-attention can see the future!

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Masked Attention

self-attention “layer”

A crude self-attention “language model”:
At test time (when decoding), the inputs at steps 2 & 3 will
be based on the output at step 1…

…which requires knowing the input at steps 2 & 3

Must allow self-attention into the past…

…but not into the future

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Source of Image : Attention is all you need
(Vaswani t al., 2017)

DecoderTransformer
Architecture

Encoder

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Transformer
Architecture

Position embeddings are added to
each word embedding. Otherwise,
since we have no recurrence, our

model is unaware of the position of a
word in the sequence!

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Transformer
Architecture

Residual connections, which mean
that we add the input to a particular

block to its output, help improve
gradient flow

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

A feed-forward layer on top of the
attention- weighted averaged value

vectors allows us to add more
parameters / nonlinearity

Transformer
Architecture

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

We stack as many of these
Transformer blocks on top of each
other as we can (bigger models are
generally better given enough data!)

Transformer
Architecture

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Moving onto the decoder, which takes
in English sequences that have been

shifted to the right (e.g., <START>
schools opened their)

Transformer
Architecture

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

We first have an instance of masked
self attention. Since the decoder is

responsible for predicting the English
words, we need to apply masking as

we saw before.

Transformer
Architecture

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Transformer
Architecture

Source of Image : Attention is all you need
(Vaswani et al., 2017)

Now, we have cross attention, which
connects the decoder to the encoder

by enabling it to attend over the
encoder’s final hidden states.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

After stacking a bunch of these
decoder blocks, we finally have our
familiar softmax layer to predict the

next English word.

Transformer
Architecture

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Transformer
Architecture

Adding non-linearities

Allows querying multiple
positions at each layer

Adds positional information

Reduces covariance shift and
makes the system stable

Prevents attention lookups into
the future while decoding

Source of Image : Attention is all you need (Vaswani et al., 2017)

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Layer normalization

• Main idea: Batch normalization is quite beneficial, but it's challenging to apply with
sequence models. The varying lengths of sequences make it difficult to normalize across
a batch. Sequences can be very long, which often results in smaller batch sizes.

• Solution: Layer normalization

Batch Norm Layer Norm

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

From Self-Attention to Transformers
• We will talk about a class of models for processing sequences that does not use
recurrent connections but instead relies entirely on attention and will build up towards a
class of models called transformers.
• To address a few key limitations, we need to add certain elements:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer

3. Adding nonlinearities so far, each successive layer is linear in the previous one

4. Masked decoding how to prevent attention lookups into the future?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Transformer Positional Encoding

For dmodel = 512,
Positional encoding is a 512-dimensional vector
(Note: Dimension of positional encoding is same as dimension of the word embeddings)
i = a particular dimension of this vector
pos = position of the word in the sequence

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Example

https://datascience.stackexchange.com/questions/51065/what-is-the-positional-
encoding-in-the-transformer-model

Pre-training Strategies

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

OpenAI introduces GPT-OSS
An open weights model with strong reasoning performance

The 120B model is on par with
o4-mini on reasoning
benchmarks , while running
efficiently on a single 80 GB
GPU

Announced on
August 5, 2025

OpenAI Blog

They also released a 20b
model, which shows similar
performance to that of o3-
mini. It only requires 16 GB of
memory and can easily run on
edge devices, making it ideal
for local inference.

This is a huge deal, allowing people to run state-
of-the-art gpt models locally on their devices

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Where We Were: Pre-trained Word Vectors

• Start with pretrained word embeddings (no
context!)

• Learn how to incorporate context in an LSTM or
Transformer while training on the task.

• The training data we have for our downstream
task (like question answering) must be sufficient
to teach all contextual aspects of language.

• Most of the parameters in our network are
randomly initialized!

… the movie was …

𝒚

Not pretrained

pretrained
(word embeddings)

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pre-trained Word Vectors -> Pre-trained Models

… the movie was …

𝒚

Pretrained jointly

• All (or almost all) parameters in NLP networks are initialized
via pretraining.

• Pretraining methods hide parts of the input from the
model, and train the model to reconstruct those parts.

• This has been exceptionally effective at building strong:

• representations of language

• parameter initializations for strong NLP
models.

• Probability distributions over language that we can sample
from

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Pretraining for Three Types of Architectures

The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders • Gets bidirectional context – can condition on future!

• How do we pretrain them?

Encoder-

Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Slides are adopted from Jacob Devlin

BERT: Bidirectional Encoder Representations from Transformers

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Background - Bidirectional Context

• Bidirectional context, unlike unidirectional context, takes into account both the left and
right contexts.

Apple is my favourite fruit and I eat it all the time.

Left Context Right Context

Target Word

Apple is my favourite brand for buying laptop and other gadgets.

Left Context Right Context

Target Word

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Motivation
• Problem with previous methods:

• Language models only use left context or right context.
• But language understanding is bidirectional.

• Possible Issue:
• Directionality is needed to generate a well-formed probability distribution.
• Words can see themselves in a bidirectional model.

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Unidirectional vs. Bidirectional Models

RNN RNN RNN

RNN RNN RNN

<s> read a

read a book

Unidirectional

RNN RNN RNN

RNN RNN RNN

<s> read a

read a book

Bidirectional

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Masked Language Modelling
• Mask out k% of the input words, and then predict the masked words (Usually k = 15%). Example :

• Too little masking: Too expensive to train
• Too much masking: Not enough context

• The model needs to predict 15% of the words, but we don’t replace with [MASK] 100% of the time.
Instead:
○ 80% of the time, replace with [MASK]

○ Example : like going to the park → like going to the [MASK]

○ 10% of the time, replace random word
○ Example : like going to the park → like going to the store

○ 10% of the time, keep same
○ Example : like going to the park → like going to the park

I like going to the [MASK] in the evening

park

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Next Sentence Prediction
• To learn relationships between sentences, predict whether Sentence B is actual

sentence that proceeds Sentence A, or a random sentence.

• Important for many important downstream tasks such as Question Answering (QA) and
Natural Language Inference (NLI)

• How to choose sentences A and B for pretraining?
• 50% of the time B is the actual next sentence that follows A (labeled as IsNext)
• 50% of the time it is a random sentence from the corpus (labeled as NotNext)

Input = [CLS] I enjoy read [MASK] book ##s [SEP]
I finish ##ed a [MASK] novel [SEP]
Label = IsNext

Input = [CLS] I enjoy read ##ing book [MASK] [SEP]
The dog ran [MASK] the street [SEP]
Label = NotNext

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Input Representation
• Use 30,000 WordPiece vocabulary on input.
• For a given token, its input representation is constructed by summing the token

embeddings, the segmentation embeddings and the position embeddings.

Source of Image : BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019)

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Training Details

• Data: Wikipedia (2.5B words) + BookCorpus (800M words)
• Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
• Training Time: 1M steps (~40 epochs)
• Optimizer: AdamW, 1e-4 learning rate, linear decay
• BERT-Base: 12-layer, 768-hidden, 12-head
• BERT-Large: 24-layer, 1024-hidden, 16-head
• Trained on 4x4 or 8x8 TPU slice for 4 days

Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Fine-Tuning Procedure

