Alternative Models

State Space Machines (SSMs)

ELL8299 · ELL881 · AIL861

Sourish Dasgupta

Associate Professor, DAU, Gandhinagar https://daiict.ac.in/faculty/sourish-dasgupta

State Space Machines – Language as a Diffusive Field

Core idea. Instead of updating memory in discrete jumps (as in RWKV or LSTM), a State Space Model (SSM) treats hidden meaning as a continuously evolving field:

$$\frac{dx}{dt} = Ax(t) + Bu(t).$$

- x(t) the latent semantic field (what the model "feels" at any instant)
- Ax(t) how that field drifts or decays on its own (internal physics)
- Bu(t) how the current token nudges or perturbs the field

- "John" introduces a subject wave it starts the semantic field.
- "loves" injects a relation pulse, slightly reshaping the field.
- "Mary" adds a strong entity trace that propagates forward.
- Between "Mary" and "who", the field morphs smoothly "Mary" shifts from object (of loves) to subject (of lives).

Takeaway. SSMs view language as a *fluid process*: meaning doesn't jump from token to token — it **flows continuously**, evolving and fading like ripples in a pond.

What exactly is "smoothness of meaning"

In an SSM, the state evolves continuously:

$$\frac{dx}{dt} = Ax + Bu.$$

If A is stable ($Re\lambda_i(A) \leq 0$):

$$x(t+\Delta)=e^{A\Delta}x(t)$$

is an analytic function of t — i.e., infinitely differentiable and without jumps.

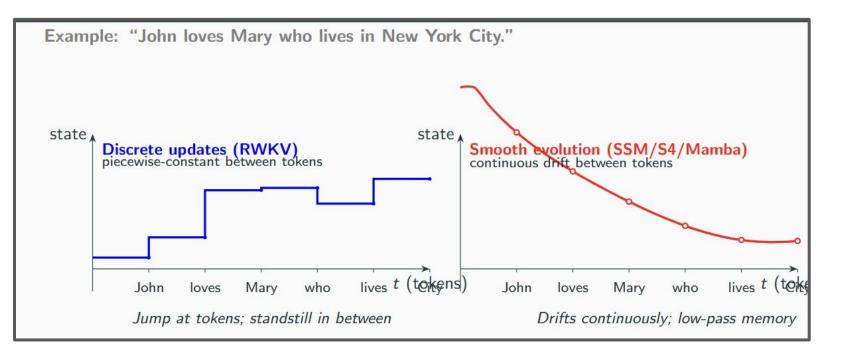
Implications.

- The state changes gradually; no abrupt token-boundary jumps.
- Rate of change bounded by ||A||: $||\dot{x}(t)|| \le ||A|| ||x(t)|| + ||B|| ||u(t)||$.
- Like clay reshaping slowly not snapping to a new form.

Example. After "Mary", the representation smoothly morphs toward "who lives..." instead of resetting at each word.

Sourish Dasgupta

RWKV (and RNN-styled models) vs. SSMs



- In RNNs/RWKV, memory changes only at discrete steps → "snapshot updates."
- In SSMs, memory evolves continuously → "fluid updates."

This makes them naturally suited for:

- Streaming signals (speech, video),
- Long-term dependencies,
- and modeling human-like temporal smoothness in thought and language.

Solving the continuous case ...

In the continuous-time equation

$$\frac{dx}{dt} = Ax + Bu, \qquad x(t + \Delta) = e^{A\Delta}x(t) + \int_0^\Delta e^{A\tau}B\,u(t + \Delta - \tau)\,d\tau,$$

Intuition: information diffuses and decays smoothly; tokens *nudge* a field that keeps evolving in between.

Sourish Dasgupta

The exponential integration factor: The Scalar Intuition

For the scalar case $\dot{x} = ax + bu$, multiply by e^{-at} (integrating factor):

$$e^{-at}\dot{x} = ae^{-at}x + be^{-at}u \quad \Rightarrow \quad \frac{d}{dt}(e^{-at}x(t)) = be^{-at}u(t).$$

Integrate on $[t, t + \Delta]$:

$$e^{-a(t+\Delta)}x(t+\Delta)-e^{-at}x(t)=\int_t^{t+\Delta}b\,e^{-as}u(s)\,ds.$$

Solve for $x(t + \Delta)$:

$$x(t+\Delta)=e^{a\Delta}x(t)+\int_t^{t+\Delta}e^{a(t+\Delta-s)}\,b\,u(s)\,ds.$$

The exponential integration factor: The Matrix Form

For constant A and step Δ ,

$$\left| \frac{d}{d\Delta} e^{A\Delta} = A e^{A\Delta} = e^{A\Delta} A. \right| e^{A\Delta} = \sum_{k=0}^{\infty} \frac{(A\Delta)^k}{k!} = I + A\Delta + \frac{A^2\Delta^2}{2!} + \frac{A^3\Delta^3}{3!} + \cdots$$

$$\int_0^{\Delta} e^{A\tau} d\tau = \sum_{k=0}^{\infty} \frac{A^k \Delta^{k+1}}{(k+1)!} = \Delta I + \frac{A\Delta^2}{2!} + \frac{A^2 \Delta^3}{3!} + \cdots$$

Solving the SSM ODE - I

Start with $\dot{x} = Ax + Bu$. Let $M(\tau) = e^{-A\tau}$. Then $\dot{M}(\tau) = -AM(\tau)$.

$$\frac{d}{d\tau}\big(M(\tau)x(\tau)\big) = \dot{M}(\tau)x(\tau) + M(\tau)\dot{x}(\tau) = \big(-AM\big)x + M\big(Ax + Bu\big) = M(\tau)B\,u(\tau).$$

Integrate from $\tau = t$ to $\tau = t + \Delta$:

$$e^{-A(t+\Delta)}x(t+\Delta)-e^{-At}x(t)=\int_t^{t+\Delta}e^{-As}B\ u(s)\ ds.$$

Left-multiply by $e^{A(t+\Delta)}$:

$$x(t+\Delta) = e^{A(t+\Delta)}e^{-At}x(t) + \int_t^{t+\Delta} e^{A(t+\Delta)}e^{-As}B \, u(s) \, ds.$$

Using constancy of A: $e^{A(t+\Delta)}e^{-At}=e^{A\Delta}$ and $e^{A(t+\Delta)}e^{-As}=e^{A((t+\Delta)-s)}$.

Sourish Dasgupta

Solving the SSM ODE - II

We have the equivalent "s-domain" expression:

$$x(t+\Delta) = e^{A\Delta}x(t) + \int_{s=t}^{t+\Delta} e^{A((t+\Delta)-s)}B \ u(s) \ ds.$$

Change variables: $\tau = (t + \Delta) - s \Rightarrow s = (t + \Delta) - \tau$, $ds = -d\tau$. When $s = t \Rightarrow \tau = \Delta$, and when $s = t + \Delta \Rightarrow \tau = 0$.

$$\int_t^{t+\Delta} e^{A((t+\Delta)-s)} B \, u(s) \, ds = \int_{\Delta}^0 e^{A\tau} B \, u(t+\Delta-\tau) \, (-d\tau) = \int_0^{\Delta} e^{A\tau} B \, u(t+\Delta-\tau) \, d\tau.$$

Final closed form (Duhamel's formula):

$$x(t+\Delta)=e^{A\Delta}x(t)+\int_0^\Delta e^{A au}\,B\,u(t+\Delta- au)\,d au\;.$$

Some special cases

No input $u \equiv 0$: $x(t + \Delta) = e^{A\Delta}x(t)$.

No dynamics A = 0: $x(t + \Delta) = x(t) + \int_0^{\Delta} B u(t + \Delta - \tau) d\tau$.

Infinitesimal step $\Delta \rightarrow 0^+$: $e^{A\Delta} \approx I + A\Delta$ and

$$x(t + \Delta) - x(t) \approx \Delta (Ax(t) + Bu(t)),$$

recovering $\dot{x} = Ax + Bu$.

Constant input $u(\cdot) \equiv u_0$:

$$x(t+\Delta) = e^{A\Delta}x(t) + \left(\int_0^\Delta e^{A\tau}d\tau\right)B\ u_0, \quad \int_0^\Delta e^{A\tau}d\tau = \begin{cases} A^{-1}(e^{A\Delta}-I), & A \text{ invertible,} \\ \text{series/limit form,} & \text{general } A. \end{cases}$$

For a small Delta ...

Retaining up to $O(\Delta^2)$:

$$x(t+\Delta) \approx \left(I + A\Delta + \frac{A^2\Delta^2}{2}\right)x(t) + \left(\Delta I + \frac{A\Delta^2}{2}\right)Bu_t.$$

Subtract x(t) and divide by Δ :

$$\frac{x(t+\Delta)-x(t)}{\Delta} \approx Ax(t)+Bu_t + O(\Delta),$$

which recovers $\dot{x} = Ax + Bu$ as $\Delta \to 0$.

How to interpret Delta?

Between "Mary" and "who",

- RWKV simply waits discrete update at the next token.
- SSM treats that interval as a smooth semantic drift: the meaning of "Mary" gently morphs from object of "loves" to subject of "lives."

 Δ measures this conceptual span, not real seconds.

What Delta implies ...

Example: "John loves Mary who lives in New York City."

Mathematical view.

$$x(t+\Delta) = e^{A\Delta}x(t) + \int_0^\Delta e^{A\tau}B\,u(t+\Delta-\tau)\,d\tau$$

 Δ controls how long the internal state x(t) evolves before the next token arrives.

Linguistic view. Δ acts as a *semantic timestep* — how far meaning drifts between words.

What Delta implies ...

Scenario	△ meaning	Linguistic effect / Example	
Normal flow	$\Delta=1$ per token	Smooth reading; steady semantic pace. "John loves Mary who lives in New York City."	
Short pause	Small $\Delta>1$	Slight hesitation — previous concept evolves. Af-	

Intuition. Information diffuses and decays smoothly; each token *nudges* a continuously evolving semantic field — faster, slower, or paused depending on Δ .

Rapid speech $/$ $\Delta < 1$ dense phrase	Tokens arrive faster than the model relaxes; meanings overlap (e.g., "in New York").
Irregular phras- Variable Δ_t ing $/$ punctuation	Commas, conjunctions, or full stops create variable semantic distances — different "tempos" of meaning flow.

What happens if the *flow* stops?

Case A: Computational stop. No new token \Rightarrow the model halts; $x_{T+1} = x_T$. The semantics freeze, like pausing a movie frame.

Case B: Conceptual pause. If we imagine continuous evolution with u(t) = 0,

$$\frac{dx}{dt} = Ax \quad \Rightarrow \quad x(t + \Delta) = e^{A\Delta}x(t).$$

In practice, language models freeze state (Case A), but the math allows Case B—useful for continuous signals like audio.

How to interpret *A* ...

A governs how internal meaning drifts when no input arrives:

$$\frac{dx}{dt} = Ax, \quad \Rightarrow \quad x(t + \Delta) = e^{A\Delta}x(t).$$

A deeper dive into A

If A is diagonalizable:

$$A = Q \Lambda Q^{-1}, \qquad e^{A \Delta} = Q e^{\Lambda \Delta} Q^{-1}.$$

Each eigenvalue λ_i defines one **mode of evolution**:

$$x_i(t) = c_i e^{\lambda_i t}$$
.

Interpretation. Each eigenvector q_i is a semantic direction — a dimension of meaning (entity, topic, rhythm, etc.). Its eigenvalue λ_i determines how that semantic aspect changes over time.

Sourish Dasgupta

Let $\lambda_i = a_i + ib_i$. Then:

$$e^{\lambda_i t} = e^{a_i t} (\cos b_i t + i \sin b_i t).$$

Decomposition.

- Real part $a_i = \text{Re}(\lambda_i) \rightarrow \text{exponential growth/decay of amplitude.}$
- Imaginary part $b_i = \operatorname{Im}(\lambda_i) \to \operatorname{oscillation}$ (rotation) in phase.

Linguistic intuition.

- $a_i < 0 \rightarrow$ memory decays: "Mary" eventually fades.
- $a_i = 0 \rightarrow$ memory persists: "John" stays in focus across the sentence.
- $b_i \neq 0 \rightarrow \text{rhythm/recurrence}$: subject-verb-object or syntactic cycles reappear.

Together: each eigenvalue encodes how fast and how rhythmically meaning evolves.

- q_1 : the entity mode tracks proper nouns like "Mary" or "City",
 - → small negative real part (slow decay).
- q_2 : the predicate mode tracks ongoing relations like "loves", "lives",
 - → medium negative real part (decays faster).
- q_3 : the syntactic rhythm mode organizes clause transitions like "who",
 - → complex eigenvalue (oscillatory behavior).
- q₄: the function word mode glues structure ("in", "the"),
 - → large negative real part (fast fade).

Then the total state x(t) is just the *sum* of these modes' contributions:

$$x(t) = \sum_i \underline{c_i e^{\lambda_i t} q_i}.$$

Think of e^{At} as an orchestra:

- Each eigenvector q_i is an instrument (a semantic component).
- $Re(\lambda_i)$ = how quickly that instrument's note fades.
- $Im(\lambda_i) = how often it repeats (its rhythm).$

Running example.

- "Mary" → low-frequency mode (slow decay, persistent topic).
- "in", "the" → high-frequency, fast-decaying modes.
- "who lives in" → oscillatory mid-range (syntactic pattern).

What does it mean for A to be diagonalizable?

$$A = Q \Lambda Q^{-1}, \qquad e^{At} = Q e^{\Lambda t} Q^{-1}$$

State evolution: $x(t) = \sum_i c_i e^{\lambda_i t} q_i$

Mathematical object	Linguistic interpretation (semantic mode)
Eigenvector q _i	An independent semantic channel (e.g., entity, predicate, syntax, function)
Eigenvalue $\lambda_i = a_i + ib_i$	Temporal behavior of that channel: $a_i = \text{decay/persistence}, b_i = \text{rhythm/oscillation}$
Coefficients ci	How much each mode is present for the current sentence/context
$A = Q \Lambda Q^{-1}$	Memory splits into separable threads that evolve independently
Diagonalizable A	Clear, disentangled roles; interpretable time-scales per semantic aspect
Non-diagonalizable A	Entangled dynamics; harder to attribute roles to subspaces

Why diagonalizability matters?

- Easy to exponentiate: $e^{At} = Qe^{\Lambda t}Q^{-1}$.
- Each mode $e^{\lambda_i t}$ evolves independently.
- If not diagonalizable: modes couple and cause mixed dynamics.

How to ensure diagonalizability?

Not every matrix A is diagonalizable — but we can **design** it to be.

A matrix A is diagonalizable if

$$A = Q \Lambda Q^{-1}$$
, where Q has n linearly independent eigenvectors.

That happens when eigenvalues are distinct or A is symmetric / normal.

Key guarantees:

Method	Condition on A	Guarantee
Distinct eigenvalues	All λ_i unique	Full independent eigenbasis.
Symmetric / Hermitian	$A = A^{\top}$ or $A = A^*$	Orthogonal diagonalization.
Normal matrices	$AA^* = A^*A$	Unitary diagonalization.
Explicit spectrum form	$A = Q \operatorname{diag}(\lambda) Q^{-1}$	Diagonalizable by construction.
Structured bases (HiPPO, Legendre)	Polynomial projection operators	Proven full-rank eigenspaces in \mathbb{C} .

Sourish Dasgupta

How to ensure diagonalizability?

Modern SSMs and RWKV-like models guarantee diagonalizability by construction.

Model	How A is constrained	Effect
RWKV	A = -wI (scalar per channel)	Trivially diagonal; independent exponential drifts.
S4 / S4D	$A = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ (complex)	Multi-mode decays / oscillations, diagonal by design.
Mamba	$A(u_t) = A_0 + \operatorname{diag}(a_t)$	Token-dependent diagonal; adaptive, still diagonalizable.

Interpretation. Diagonalizability ensures A acts like a set of independent *semantic resonators*: each eigenvalue controls its own memory rhythm, and all combine linearly to form meaning.

Coming up ...

SSM connection.

- **S4:** learns multiple stable modes (diverse λ_i) smooth long-term dynamics.
- Mamba: makes λ_i depend on the current token selective temporal rhythm.
 - → The real parts control memory, the imaginary parts control structure.

Questions?

