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Qwen3-Coder-Flash Unleashed
High-Performance Code Generation with Agent Integration!

Qwen3-Coder-30B-A3B-Instr
uct is a fine-tuned MoE 
(Mixture-of-Experts) variant in 
the Qwen3 model family: it 
has 30.5B total parameters, 
comprised of 128 experts, 
with only 8 experts (≈ 3.3B 
parameters) activated per 
inference - making it highly 
efficient while retaining 
strong coding and reasoning 
performance.

Announced on 
August 1, 2025

Qwen3-Coder

It shows significant 
performance among open 
models on Agentic Coding, 
Agentic Browser-Use, and 
other foundational coding 
tasks. It also features Long-
context Capabilities with 
native support 
for 256K tokens, extendable 
up to 1M tokens using Yarn, 
optimized for repository-
scale understanding.



Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.



Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.
Note: This diagram shows test time
behavior: decoder output is fed in as

next step’s input

Decoder RNN is a 
Language Model that 

generates target 
sentence, conditioned 

on encoding.



Training an NMT System

Seq2seq is optimized as a 
single system. Backpropagation 

operates “end-to-end”.



Issues With RNN
• Linear interaction distance
• Bottleneck problem
• Lack of parallelizability

ATTENTION



Sequence-to-Sequence: The Bottleneck Problem
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Encoding of the source sentence
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Information 
bottleneck!

This needs to capture all 
information about the 

source sentence.
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Sequence-to-Sequence With Attention
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Sequence-to-Sequence With Attention
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On this decoder timestep, we are mostly
focusing on the first encoder hidden state
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Take softmax to turn the scores 
into a probability distribution
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output

Use the attention distribution to take a 
weighted sum of the encoder hidden 

states.

The attention output mostly contains 
information from the hidden states that 

received high attention.
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Sequence-to-Sequence With Attention

Concatenate attention output 
with decoder hidden state, then 
use to compute ŷ1 as before
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Sometimes we take the
attention output from the 
previous step, and also feed it
into the decoder (along with
the usual decoder input).
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Attention is Great
• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source
• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see what the decoder was 

focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself
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Attention is a General Deep Learning Technique
• We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine 

Translation.
• However: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)
• More general definition of attention:

• Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the 
values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the 

encoder hidden states (values).
• Intuition:

• The weighted sum is a selective summary of the information contained in the values, where the query determines 
which values to focus on.

• Attention is a way to obtain a fixed-size representation of an arbitrary set of representations  
 (the values), dependent on some other representation (the query).

75



Variants of Attention

More information:  
“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention  
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, 
https://arxiv.org/pdf/1703.03906.pdf



Tanmoy Chakraborty Tanmoy ChakrabortyIntroduction to LLMs

Self-Attention

shared weights at all time steps


