# Sequence-to-Sequence Modeling





#### Qwen3-Coder-Flash Unleashed

High-Performance Code Generation with Agent Integration!

Announced on August 1, 2025

Qwen3-Coder



Qwen3-Coder-30B-A3B-Instruct is a fine-tuned MoE (Mixture-of-Experts) variant in the Qwen3 model family: it has 30.5B total parameters, comprised of 128 experts, with only 8 experts (≈ 3.3B parameters) activated per inference - making it highly efficient while retaining strong coding and reasoning performance.

| Benchmarks              | Qwen3-Coder<br>30B-A3B-Instruct | Open Models<br>Qwen3-Coder<br>480B-A35B-Instruct | Kimi-K2<br>Instruct | DeepSeek-V3<br>0324 | <b>Propriet</b><br>Claude<br>Sonnet-4 | OpenAI<br>GPT-4.1 |
|-------------------------|---------------------------------|--------------------------------------------------|---------------------|---------------------|---------------------------------------|-------------------|
|                         |                                 | Agentic Codin                                    | g                   |                     | ·                                     | ·                 |
| Terminal-Bench          | 31.3                            | 37.5                                             | 30.0                | 2.5                 | 35.5                                  | 25.3              |
| SWE-bench Verified      |                                 | 30000 Tr 60000                                   |                     |                     |                                       |                   |
| w/ OpenHands, 500 turns | 51.6                            | 69.6                                             | -                   | -                   | 70.4                                  | -                 |
| w/ OpenHands, 100 turns | 51.6                            | 67.0                                             | 65.4                | 38.8                | 68.0                                  | 48.6              |
| w/ Private Scaffolding  | -                               |                                                  | 65.8                | -                   | 72.7                                  | 63.8              |
| SWE-bench Live          | 20.7                            | 26.3                                             | 22.3                | 13.0                | 27.7                                  | -                 |
| SWE-bench Multilingual  | 34.7                            | 54.7                                             | 47.3                | 13.0                | 53.3                                  | 31.5              |
| Multi-SWE-bench mini    | 19.5                            | 25.8                                             | 19.8                | 7.5                 | 24.8                                  | -                 |
| Multi-SWE-bench flash   | 19.3                            | 27.0                                             | 20.7                | -                   | 25.0                                  | -                 |
| Aider-Polyglot          | 33.3                            | 61.8                                             | 60.0                | 56.9                | 56.4                                  | 52.4              |
| Spider2                 | 21.4                            | 31.1                                             | 25.2                | 17.7                | 31.1                                  | 25.6              |
|                         |                                 | Agentic Browser                                  | Use                 |                     |                                       |                   |
| WebArena                | 43.5                            | 49.9                                             | 47.4                | 40.0                | 51.1                                  | 44.3              |
| Mind2Web                | 51.0                            | 55.8                                             | 42.7                | 36.0                | 47.4                                  | 49.6              |
|                         |                                 | Agentic Tool U                                   | se                  |                     |                                       |                   |
| BFCL-v3                 | 62.2                            | 68.7                                             | 65.2                | 64.7                | 73.3                                  | 62.9              |
| TAU-Bench Retail        | 68.7                            | 77.5                                             | 70.7                | 59.1                | 80.5                                  | -                 |
| TAU-Bench Airline       | 48.0                            | 60.0                                             | 53.5                | 40.0                | 60.0                                  | -                 |

It shows significant performance among open models on Agentic Coding, Agentic Browser-Use, and other foundational coding tasks. It also features Long-context Capabilities with native support for 256K tokens, extendable up to 1M tokens using Yarn, optimized for repository-scale understanding.

#### Neural Machine Translation (NMT)

#### The Sequence-to-Sequence Model

Encoding of the source sentence.

Provides initial hidden state

for Decoder RNN.



**Encoder RNN produces an encoding** of the source sentence.

Teacher-forcing

**Neural Machine Translation (NMT)** 



# Training an NMT System

prob of "he" prob of "with" prob of <END> Seq2seq is optimized as a single system. Backpropagation operates "end-to-end". **Decoder RNN Encoder RNN** entarté <START> he hit with pie me Target sentence (from corpus) Source sentence (from corpus)

= negative log

= negative log

= negative log

#### **Issues With RNN**

- Linear interaction distance
- Bottleneck problem
- Lack of parallelizability

# **ATTENTION**

#### Sequence-to-Sequence: The Bottleneck Problem



#### Sequence-to-Sequence: The Bottleneck Problem











































#### **Attention is Great**

- Attention significantly improves NMT performance
  - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
  - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
  - Provides shortcut to faraway states
- Attention provides some interpretability ??
  - By inspecting attention distribution, we can see what the decoder was focusing on
  - We get (soft) alignment for free!
  - This is cool because we never explicitly trained an alignment system
  - The network just learned alignment by itself



#### Attention is a *General* Deep Learning Technique

- We've seen that attention is a great way to improve the sequence-to-sequence model for Machine Translation.
- However: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)
- More general definition of attention:
  - Given a set of vector *values*, and a vector *query*, attention is a technique to compute a weighted sum of the values, dependent on the query.
- We sometimes say that the query attends to the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values).

#### Intuition:

- The weighted sum is a *selective summary* of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a fixed-size representation of an arbitrary set of representations
  (the values), dependent on some other representation (the query).

#### Variants of Attention

- Original formulation:  $a(\mathbf{q}, \mathbf{k}) = w_2^T \tanh(W_1[\mathbf{q}; \mathbf{k}])$
- Bilinear product:  $a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T \mathbf{W} \mathbf{k}$

Luong et al., 2015

Dot product:  $a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T \mathbf{k}$ 

Luong et al., 2015

• Scaled dot product:  $a(\mathbf{q}, \mathbf{k}) = \frac{(\mathbf{q}^T \mathbf{k})}{|\mathbf{k}|}$ 

More information:

Vaswani et al., 2017

<sup>&</sup>quot;Deep Learning for NLP Best Practices", Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

<sup>&</sup>quot;Massive Exploration of Neural Machine Translation Architectures", Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf





this is *not* a recurrent model! but still weight sharing:

$$h_t = \sigma(Wx_t + b)$$
 shared weights at all time steps

(or any other nonlinear function)



