Sequence-to-Sequence
Modeling

»~

‘BREAKING

Qwen3-Coder-30B-A3B-Instr
uct is a fine-tuned MoE
(Mixture-of-Experts) variant in
the Qwen3 model family: it
has 30.5B total parameters,
oYU.9b,
comprised of 128 experts,
with only 8 experts (= 3.3B
parameters) activated per
inference - making it highly
efficient while retaining
strong coding and reasoning
performance.

Qwen3-Coder-Flash Unleashed

EN3-CODER-FLI

R /B High-Performance Code Generation with Agent Integration!
-,

} QW

’0‘

e/,

Open Models Proprietary Models
Benchmarks Owen3-Coder Qwen3-Coder Kimi-K2 DeepSeek-V3 Claude OpenAl
30B-A3B-Instruct J| 4B0B-A35B-Instruct Instruct 0324 Sonnet-4 GPT-4.1
Agentic Coding
Terminal-Bench 30.0 2.5 35.5 25.3
SWE-bench Verified
w/ OpenHands, 500 turns - - 70.4 -
w/ OpenHands, 100 turns 65.4 38.8 68.0 48.6
w/ Private Scaffolding 65.8 - 72.7 63.8
SWE-bench Live 22.3 13.0 27.7 -
SWE-bench Multilingual 47.3 13.0 53.3 3.5
Multi-SWE-bench mini 19.8 7.5 24,8 -
Multi-SWE-bench flash 20.7 - 25.0
Aider-Polyglot 60.0 6.9 56.4 52.4
Spider2 25.2 17.7 il.l 25.6
Agentic Browser Use
WebArena 43.5 49.9 47.4 40.0 51.1 44.3
Mind2Web 51.0 55.8 42.7 36.0 47.4
Agentic Tool Use
BFCL-v3 68.7 65.2 64.7 73.3 62.9
TAU-Bench Retail 12.5 70.7 59.1 80.5 -
TAU-Bench Airline 48.0 60.0 53.5 40.0 60.0 -

Announced on

August 1, 2025

==
wen3-Coder

It shows significant
performance among open
models on Agentic Coding,
Agentic Browser-Use, and
other foundational coding
tasks. It also features Long-
context Capabilities with
native support

for 256K tokens, extendable
up to 1M tokens using Yarn,
optimized for repository-
scale understanding.

Neural Machine Translation (NMT)

The Sequence-to-Sequence Model

Encoding of the source sentence.
Provides initial hidden state
for Decoder RNN.

Encoder RNN

Source sentence (input)

Encoder RNN-producesarr=r=o01¢ of the source sentence.

Neural Machine Translation (NMT)

 deri

TW/

!

The Sequence-to-Sequence Modelf—’//’/"'ra rget sentence (output)

Encoding of the source sentence. A
Provides initial hidden state with
for Decoder RNN.
ﬂ
\ E
= 0
Z m
o] @) (@]
S ol | o | —> |0
- L] 1@ O
Q @ @ - o
c [F 5
L
a entarteb me

|

x é‘ X
- - -
20 o0 20
ol: (o) [o
ol :lol:]e
o—lo 1o
o T o

with a pie

Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

Decoder RNN is a
T Language Model that
generates target
sentence, conditioned
on encoding.

NNY Jop02ag

Training an NMT System

= negative log = negative log = negative log
prob of “he” prob of “with"” prob of <END>
Seqzseq S optimized as a = N+ T2 + 1z HJal+ Js + J6 4 J7 :=T> T
] _ y) A A) A A Y
single system. Backpropagation
operates “end-to-end”.
5}1 j"z 5}3 ?4 ?5 ?6 ?7
A A A M A M A
= o
< &
o o| [o E] o] (o] [o] [e] [e i] o S
g o e ° it {mmat- et mma e L @
O 0 @ L o o o 0o o o o -
- Y A A A 7 A /) R e
L P
1 | | | | |
il m a entarte <START> he hit me with a pie
\ J \ J
Y Y

Source sentence (from corpus) Target sentence (from corpus)

Issues With RNN

* Linear interaction distance
* Bottleneck problem
* Lack of parallelizability

ATTENTION

Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence
Target sentence (output)

A
r A\
we had gone to the market <END>
Z 1 I o
Z @
o (0] (0] 0] @) (o) o) o) (0] o (@) S
& e| JO 0] o 0] oL _.|O (0] o @) Q
o e| 10 (0] @) @) o 710 (0] (0] @) @
8 0] @ 0] o 0] o o 0] (0] 0] v
c Z
gH dVR Tl'a Q <START> we had gone the market
w ham baajaar gaye the}
Y

Source sentence (input) Any problems with this architecture?

Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

This needs to capture all Target sentence (output)
information about the Al

4 A\

source sentence. Information we had gone to the market <END>
bottleneck!
pd \ w)
= J— @
o o| (o] (o ol [o] (o] (o] (o] [o Q
= ol |o|!|. |@ Jol .ol .ol .o| el .|o S
W le[e[T"]e@ lo o o[o o o @
3 e |o]| |@ ol |o| |o] |o] |eo] |o 5
c A Z
| <START> we had gone the

baajdar gaye the
N Jj gay' y

SourEch (irhut)\

Sequence-to-Sequence With Attention

dot product

scores
—

Encoder Attention

——
NN4
1ap0ooa(

RNN
I_H

o——{0000]

gd dNR T <START>
< ham baajairf gaye theJ .
Source sentence (input)J

Sequence-to-Sequence With Attention

dot product

scores
—

Encoder Attention

RNN
I_H

1]

co——{e000]

gl SR ™ <START>
< ham baajaar gaye theJ
Y

Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

dot product

Attention
scores
—

S Z o
o Z 0
2o
L (@)
allum o] L <START>
< ham baajaar gaye the
Y

Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

dot product

scores
—

Encoder Attention

RNN
I_H

1]

C—> 0000

gl SR ™ <START>
< ham baajaar gaye theJ
Y

Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

J

Attention
distribution

Attention

Encoder

Scores

RNN

y On this decoder timestep, we are mostly
Y focusing on the first encoder hidden state
{ H .D\ 00‘

| s |

Take softmax to turn the scores
into a probability distribution

/4
(@) (0]
@ (0]
@) (0]
@ (@)
gl SR ™ :L <START>
N ham baajaar gaye theJ

v
Source sentence (input)

NN4
1apooag

Sequence-to-Sequence With Attention

Attention

Attention

Encoder

scores distribution

RNN

Attention

output
pv

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains

| information from the hidden states that

received high attention.

}
(0]
(0]
(0]
0]
gl SR ™
N ham baajaar gaye theJ

v
Source sentence (input)

<START>

NN4
1apooag

Sequence-to-Sequence With Attention

Attention
distribution

Attention

Encoder

Scores

RNN

Attention we
output A

—> 0000
—> 0000

—]

g9 SR T <START>

h baaj th
\ ham baajaar gaye e,

v
Source sentence (input)

Concatenate attention output
with decoder hidden state, then
use to compute y, as before

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

Attention

Attention
distribution

Attention

Encoder

Scores

RNN

v
Source sentence (input)

.."...-'::: _". '~......__...... yz

) o) 0 (0] (o

0] | @ N (0] 1@] O o

0] 1@ (0] 10 10 o

0] @ (0] (0] 0] o

g7 dWR ™ <START> we
< ham baajaar gaye theJ

Sometimes we take the
attention output from the
previous step, and also feed it
into the decoder (along with
the usual decoderinput).

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

Attention gone
output A

1“ -
R
.‘ .‘
. -
o 3 .
o 0 .,
. K . A
+* » .
- - "
o 3 .,
* L .
.
'-' - v.
k
.0' ..
B e |

Attention
distribution

Attention
scores
—

o) o) o) [o‘ o) o)
L e| .|o @ 0 ol .|o
o £ o ‘|@ ‘@ ’lo ol °|o
T o) o) 0 0 0 o)
g7 dNR T l <START> we
< ham baajaar gaye theJ

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

: Attention to
®| output T
Q| __

- STRE, IS
E _8 ““‘«::.’ . . ! %‘:4
O T I:I
£ 5 _
ks
C
o wm
S 3
g 3 {

z n
o o) (e] [e] [e [F ol [o] (o
L o o] ol .|@® Jo ol .o 0
O | |O e| 10 10 ol 10 0}
T (] o o o o o o o
gH dlum) l <START> we had gone
< ham baajaar gaye the

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

(0] .

e | Attention h

®| output

o P 1
y
/

L

\q ,-\ F‘
o RS
o2 . .
50 B s
S 5

Attention
distribution
—
—1

Attention
scores
7\f‘\

\4

—> 0000

A4

—> 0000

A4

\ 2
—> 0000
000

oovoﬂ

—> 0000

Encoder

RNN
—M
— 0000

—>1 0000

Qo
Q
Q
Q
g1 dlum o} l <START> we had gone to

\ham baajaar gaye the

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

®| Attention {Us b market
5 output] w '\’& T

v
c‘::;

. a*l-Lv

>~
7

Attention
distribution
—

)g

C
o O
S 8
3 3
z n
o) (6} o ‘wa W)
8 Z o 0 28
S & S 1S z¢
5 ° = 2
V’* g0 gk T l START> we had gone to the

< ham baajaar gaye theJ

v
Source sentence (input)

Attention is Great

Attention significantly improves NMT performance

It’s very useful to allow decoder to focus on certain parts of the source

Attention solves the bottleneck problem

Attention allows decoder to look directly at source; bypass bottleneck

Attention helps with vanishing gradient problem

Provides shortcut to faraway states

Attention provides some interpretability Qq

By inspecting attention distribution, we can see what the decoder was
focusing on

We get (soft) alignment for free!
This is cool because we never explicitly trained an alighment system
The network just learned alignment by itself

(-with

pie

Attention is a General Deep Learning Technique

* \We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine
Translation.

 However: You can use attentionin many architectures (not just seg2seq) and many tasks (not just MT)
* More general definition of attention:

 Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the
values, dependent onthe query.

* We sometimes say that the query attends to the values.

 For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the
encoder hidden states (values).

e |ntuition:

* The weighted sum is a selective summary of the information contained in the values, where the query determines
which values to focus on.

* Attention is a way to obtain a fixed-size representation of an arbitrary set of representations
(the values), dependent on some other representation (the query).

e 7

Variants of Attention

e Original formulation: a(q,k) = w) tanh(W,[q; k])

e Bilinear product: a(q,k) = q' Wk Luong et al, 2015

\/DOJ[product: a(q, k) = q]:lf Luong et al., 2015

q'k
® Scaled dOt prOdUCt a(q, k) — Vaswani et al., 2017

More information:

“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,
https://arxiv.org/pdf/1703.03906.pdf

Self—Ail'tention

X
" D
X +

Introduction to LLMs

this is not a recurrent model!
but still weight sharing:

ht — O'(W.Tt + b)

shared weights at all time steps

(or any other nonlinear function)

Tanmoy Chakraborty

