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REMINDER
You are advised to study the 

first 10 lectures (till Lec 
6.1) of the previous year’s 
course playlist before the 
next class on August 4. 

Otherwise, you will not be 
able to follow. Here’s the link 

to the playlist:

https://lcs2.in/llm2401

Last year’s (2024) offering

https://lcs2.in/llm2401
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Next Word Prediction

Guess the next word in the sequence… 

I like pizza with loads of  ______.

cheese
P(cheese | I like pizza with loads of) 

tree

P(tree | I like pizza with loads of) 

corn
P(corn | I like pizza with loads of) 

Previous words in the sentence Word to be 
predicted

P(cheese| I like pizza with loads of) > P(corn| I like pizza with loads of) >> P(tree| I like pizza with loads of)

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Probabilistic Language Models
• Goal: Calculate the probability of a sentence or sequence consisting of n words

P(W) = P(w1, w2, w3, ... , wn)

or

• Related Task: Calculate the probability of the next word conditioned on the preceding 
words

P(w6 | w1, w2, w3, w4, w5) 

A model that calculates either of these is referred to as a Language Model (LM).

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Estimate Conditional Probabilities

P(begun | The monsoon season has) = Count (The monsoon season has begun) 
Count (The monsoon season has) 

• Problem: Enough data is not available to get an accurate estimate of the above 
quantities.

• Solution: Markov Assumption

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Markov Assumption
Every next state depends only the previous k states

• Chain Rule: 

P(w1w2 ...wn) = ς𝑖 P(w i |w1w2 … w i−1 
)

• Applying Markov Assumption we condition on only the preceding k words:

P(w1w2 ...wn) = ς𝑖 P(w i |w i−k … w i−1 
)

• Probabilistic Language Models exploit the Chain Rule of Probability and Markov 
Assumption to build a probability distribution over sequences of words.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/


Tanmoy Chakraborty Introduction to LLMs

N-gram Language Models
• Let’s consider the following conditional probability:

P(begun | the monsoon season has)

• An N-gram model considers only the preceding N −1 words.
• Unigram: P(begun) 
• Bigram: P(begun | the) 
• Trigram: P(begun | the monsoon)

Relation between Markov model and Language Model:

An N-gram Language Model ≡ (N −1) order Markov Model

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Limitation of N-gram Language Models
• An insufficient model of language since they are not effective in capturing long-range 

dependencies present in language.

• Example: 

 The project, which he had been working on for months, was finally approved by the 
committee.

 The above example highlights the long-distance dependency between “project” and  “approved”, 
where the context provided by earlier words affects the interpretation of later parts of the sentence.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Evaluation of a Language Model
• Does our language model prefer good sentences to bad ones? 

• Assign higher probability to “real” or “frequently observed” sentences than “ungrammatical” or “rarely 
observed” sentences

• Terminologies:
• We optimize the parameters of our model based on data from a training set.
• We assess the model's performance on unseen test data that is disjoint from the training data.
• An evaluation metric provides a measure of the performance of our model on the test set.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Extrinsic Evaluation
• Measure the effectiveness of a language model by testing their performance on 

different downstream NLP tasks, such as machine translation, text classification, 
speech recognition.

 

• Let us consider two different language models: A and B
• Select a suitable evaluation metric to assess the performance of the language models based on the 

chosen task.
• Obtain the evaluation scores for A and B 
• Compare the evaluation scores for A and B

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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Intrinsic Evaluation: Perplexity
Thus, for the sentence W, perplexity is:

PP(W) = P(w1w2 ...wn)−
1

𝑛

      Applying Chain Rule: 

PP(W) = ς
1

P(w i |w1w2 ...w i−1 
)

1

𝑛

      Applying Markov Assumption (n = 2), i.e. for bigram LM: 

PP(W) = ς
1

P(w i |w i−1 
)

1

𝑛

Minimizing perplexity is the same as maximizing probability.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/
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How to Build a Neural Language Model?
• Recall the Language Modeling task:

• Input: sequence of words 𝒙(𝟏), 𝒙(𝟐), … , 𝒙(𝒕)

• Output: probability distribution of the next word 𝑷 𝒙 𝒕+𝟏 𝒙 𝒕 , … , 𝒙 𝟏

• How about a window-based neural model?
Example: NER Task

in Paris are amazingmuseums

LOCATION

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Fixed-window Neural Language Model

concatenated word embeddings

words / one-hot vectors

hidden layer

output distribution

books
laptops

a zoo

their as the proctor started the clock
discard

the students opened

fixed window

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Fixed-window Neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-

grams We need a neural 
architecture that can 
process any length

input

Approximately: Y.Bengio, et al.
(2000/2003): A Neural Probabilistic

Language Model

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Recurrent Neural Networks (RNN)

hidden states

input sequence 
(any length)

outputs  
(optional)

Core idea: Apply the same 
weights𝑊 repeatedly

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Simple RNN Language Model

words / one-hot vectors

word embeddings

the students opened their

books
laptops

a zoooutput distribution

Note: this input sequence could be much longer now!

hidden states

 is the initial hidden state

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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RNN Language Models

the students opened their

books
laptops

a zooRNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from many steps 
back

• Model size doesn’t increase for longer input 
context

• Same weights applied on every
timestep, so there is symmetry in how inputs 
are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access information 

from many steps back

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Training an RNN Language Model
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Corpus the students opened their exams

Loss

Predicted  probability 
distributions

= negative log prob  
of “exams”

…

…



Corpus the students opened their exams

Loss

Predicted  probability 
distributions

…
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Problems with RNNs



Vanishing and Exploding Gradients



Vanishing Gradient Intuition
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Chain Rule!



Vanishing Gradient Intuition

Chain Rule!



Vanishing Gradient Intuition

Chain Rule!



What happens if these are small?

Vanishing gradient
problem: When these 
are small, the gradient 
signal gets smaller and 

smaller as it 
backpropagates further

Vanishing Gradient Intuition



Effect of Vanishing Gradient on RNN-LM
• LM task: When she tried to print her tickets, she found that the printer was out of toner. 

She went to the stationery store to buy more toner. It was very overpriced. After installing 
the toner into the printer, she finally printed her

• To learn from this training example, the RNN-LM needs to model the dependency 
between “tickets”on the 7th step and the target word “tickets”at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time



LSTMs & GRUs



We have a sequence of inputs 𝑥(𝑡), and we will compute a sequence of hidden states ℎ(𝑡) and cell states 
𝑐(𝑡). On timestep t:

LSTM

Output gate: controls what parts of 
cell are output to hidden state
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Forget gate: controls what is kept vs 
forgotten, from previous cell state

Input gate: controls what parts of the 
new cell content are written to cell

New cell content: this is the new 
content to be written to the cell

Cell state: erase (“forget”) some 
content from last cell state, and write 
(“input”) some new cell content

Hidden state: read (“output”) some 
content from the cell

Sigmoid function: all gate 
values are between 0 and 1

Gates are applied using element-wise 
(or Hadamard) product: ⊙

⊙ ⊙

⊙



Gated Recurrent Units (GRUs)
• Proposed by Cho et al. in 

2014 as a simpler 
alternative to the LSTM.

• On each timestep t, we 
have input 𝑥(𝑡) and hidden 
state ℎ(𝑡) (no cell state).

"Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation", Cho et al.
2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of 
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate 
simultaneously controls what is kept 
from previous hidden state, and what is
updated to new hidden state content

New hidden state content: reset gate 
selects useful parts of prev hidden 
state. Use this and current input to 
compute new hidden content.

How does this solve vanishing gradient? 
Like LSTM, GRU makes it easier to retain info 
long-term (e.g. by setting update gate to 0)

https://arxiv.org/pdf/1406.1078v3.pdf


Sequence-to-Sequence 
Modeling



Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.



Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.
Note: This diagram shows test time
behavior: decoder output is fed in as

next step’s input

Decoder RNN is a 
Language Model that 

generates target 
sentence, conditioned 

on encoding.



Training an NMT System

Seq2seq is optimized as a 
single system. Backpropagation 

operates “end-to-end”.



Issues With RNN
• Linear interaction distance
• Bottleneck problem
• Lack of parallelizability

ATTENTION



Sequence-to-Sequence: The Bottleneck Problem
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<START> we had gone     to the market

we had gone   to the market    <END>

D
ecoderRN

N

Any problems with this architecture?

Encoding of the source sentence
            Target sentence (output)

Source sentence (input)

हम बाजार गये थे
ham      baajaar     gaye         the
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En
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N
N

<START> we had gone     to the market

we had gone   to the market    <END>

D
ecoderRN

N
Encoding of the source sentence

            Target sentence (output)

Information 
bottleneck!

This needs to capture all 
information about the 

source sentence.

Source sentence (input)

हम बाजार गये थे
ham      baajaar     gaye         the
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On this decoder timestep, we are mostly
focusing on the first encoder hidden state
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Take softmax to turn the scores 
into a probability distribution
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Attention  
output

Use the attention distribution to take a 
weighted sum of the encoder hidden 

states.

The attention output mostly contains 
information from the hidden states that 

received high attention.
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Sequence-to-Sequence With Attention

Concatenate attention output 
with decoder hidden state, then 
use to compute ŷ1 as before

D
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Source sentence (input)

हम बाजार गये थे
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Attention  
output

had

Sometimes we take the
attention output from the 
previous step, and also feed it
into the decoder (along with
the usual decoder input).
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Attention is Great
• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source
• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see what the decoder was 

focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself
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Attention is a General Deep Learning Technique
• We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine 

Translation.
• However: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)
• More general definition of attention:

• Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the 
values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the 

encoder hidden states (values).
• Intuition:

• The weighted sum is a selective summary of the information contained in the values, where the query determines 
which values to focus on.

• Attention is a way to obtain a fixed-size representation of an arbitrary set of representations  
 (the values), dependent on some other representation (the query).

75



Variants of Attention

More information:  
“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention  
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, 
https://arxiv.org/pdf/1703.03906.pdf

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf
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