Introduction to

Language Models

Tanmoy Chakraborty
Associate Professor, IIT Delhi
https://tanmoychak.com/

AAAAAAAAAAAAA
SSSSSSSSSSSSSSSSSSSSSSSSSS

You are advised to study the

REM | N DER first 10 lectures (till Lec

6.1) of the previous year’s
course playlist before the

Last year’s (2024) offering next class on August 4.

Otherwise, you will not be
Large Language Models 3 able to follow. Here’s the link
| to the playlist:

Lecture 01 _
LLMs | Introduction and Recent

y [ARGE)
LAS . ¥
I- R G E e
[4514
] — Lcs2

LLMs | Introduction to Natural

L N G U AG E k = : 2 [EEHEFRE Language Processing | Lec 02
58:14
s = _ |CS2
) B :

LLMs | Introduction to Language

of (ANShace .)
l e iy A Models| Lec 3.1
== - LCS2
4 [

e LLMs | anguage Models:
LT Advanced Smoothing &...
/57:06
,,,,,,

Introductlon & Recent Advances

- o LLMs | Word Representation:
RG] \yord2vec | L
&

SUBSCRIBE ’ S é N 6 l?;sg‘ 9_1; GloVe | Lec 4.2
. oy g i | == - | Cs2

. . . 3 > g } - . s LMs | Neural La
Visit: les2.in/lim2401 |] s o
4 - - a RN | C5?

| - rA -
|4 | 2 Pl ¢ 1:47/4513 La o LLMs | Neural Language Models:
o s fiim" Uil 1CTM Aand DI L Aan E D

LLMs | Introduction and Recent Advances | Lec 01

https://lcs2.in/llm2401

https://lcs2.in/llm2401

Next Word Prediction

Guess the next word in the sequence... cheese
P(cheese | | like pizza with loads of)

corn

v

(\I like pizza with loads of}

_ L P(corn | | like pizza with loads of)
Previous words in the sentence \word to be

predicted

tree

P(tree | | like pizza with loads of)

P(cheese| I like pizza with loads of) > P(corn| | like pizza with loads of) >> P(tree| | like pizza with loads of)

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Probabilistic Language Models

* Goal: Calculate the probability of a sentence or sequence coypisisting of n Wordsvo)
P(W) = P(Wy, Wy, W, ..., wy) ?(W
- Gt \(®
* Related Task: Calculate the probability of the next word conditioned on the preceding
words o o(w w\) QQ%\ LAY
P(we | Wy, Wy, W3, Wy, Wg)) ?(\0,,\‘ % \\),,\)3)
.

(R
v~

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

. " T O i b ")
Estimate Conditional Probabilities WP)

Count (The monsoon season has begun)
Count (The monsoon season has)

P(begun | The monsoon season has) =

* Problem: Enough data is not available to get an accurate estimate of the above

guantities.
. Solutior@ssumption

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Markov Assumption

Every next state depends only the previous k states

e Chain Rule:

Pw,w,..w.)=]]; P(w,|w,w, ..w_;)

* Applying Markov Assumption we condition on only the preceding k words:

Pw,w,.w.)=]];P(w,lw._, ..w,,)

* Probabilistic Language Models exploit the Chain Rule of Probability and Markov
Assumption to build a probability distribution over sequences of words.

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

wne T

‘V m' L

N-gram Language Models W
* Let’s consider the following conditional probability: (" ‘)

P(begun | the monsoon season has)

* An N-gram model considers only the preceding N -1 words.
* Unigram: P(begun)
* Bigram: P(begun | the)
* Trigram: P(begun | the monsoon)

Relation between Markov model and Language Model:

An N-gram Language Model = (N -1) order Markov Model

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

(/\‘\

Mm
Limitation of N-gram Language Models “V

* Aninsufficient model of language since they are not effective in capturing long-range
dependencies present in language.

* Example: \
The project, which he had been workin onfoa roved by the
/ Thepro gon oG apbroved

committee. ——

The above example highlights the long-distance dependency between “project” and “approved”,
where the context provided by earlier words affects the interpretation of later parts of the sentence.

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

5 [\
Evaluation of a Language Model\p«f}’
v"/

* Does our language model prefer good sentences to bad ones? |

* Assign higher probability to “real” or “frequently observed” sentences than “ungrammatical” or “rarely
observed” sentences

* Terminologies:
* We optimize the parameters of our model based on data from a training set.
* We assess the model's performance on unseen test data that is disjoint from the training data.
* An evaluation metric provides a measure of the performance of our model on the test set.

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Extrinsic Evaluation

* Measure the effectiveness of a language model by testing their performance on
different downstream NLP tasks, such as machine translation, text classification,
speech recognition.

* Let us consider two different language models: A and B

* Select a suitable evaluation metric to assess the performance of the language models based on the
chosen task.

* Obtain the evaluation scores for Aand B
* Compare the evaluation scores for Aand B

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Intrinsic Evaluation{ Perplexity

Thus, for the sentence W, perplexity is:

1

PP(W)= P(w,w, ..wn) n

Applying Chain Rule:

PP = (Moo,)

W [W,w, ..wW,_,)

Applying Markov Assumption (n = 2), i.e. for bigram LM:

Minimizing perplexity is the same as maximizing probability.

Tanmoy Chakraborty Introduction to LLMs

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Neural Language Models

How to Build a Neural Language Model?

* Recall the Language Modeling task:
* Input: sequence of words x(1, x(®), ... x® ek
Wse
ol

» Output: probability distribution of the next word P(xD|x®, . (1) G‘\P"L
* How about a window-based neural model? Qﬂk’(
Example: NER Task LOCATION
(K%
(000000000000
| |44

[.... 0000 0000 0000]

I ! f f f

museums in Paris are amazing

@% LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

A Fixed-window Neural Language Model

CN"’ .
! N

output distribution
y = softmax(Uh + by) € RV {L/ —
b

p 700 L;
\3 hidden layer “Z/
00000000000

‘3 h:f(We+b1> ym XN

Y =1

concatenated word embeddings & @ @ 0000 000 /0000 v

words / one-hot vectors \
(1) 7(2) 7(3) n(4)
& 1 g ke 3 4L m(l) w(2) 213(3) w(4)
@ students opened their
[// /discard / / 777 V4 g
—1/ / 7~ // fided windbw

@?% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

A Fixed-window Neural Language Model

Approximately: Y.Bengio, et al.

books e
) . lapt (2000/2003): A Neural Probabilistic
Improvements over n-gram LM: aptops L anguage Model
* No sparsity problem
 Don’t need to store all observed n-
grams : T el We need a neural
architecture that can
(e00000000000)]
. . . _ process any length
Remaining problems: /
: . . input
* Fixedwindow is too small w R4
* Enlarging window enlarges W [.... 0000 0000]

]

the students opened their
ey e z(®) z(*)

@?% LLMs: Introduction and Recent Advances : Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Recurrent Neural Networks (RNN)

outputs {

(1) (2) (3) y(4)
(optional) Y Yy Yy

Core idea: Apply the same
weights W repeatedly

hidden states <

input sequence 1
(any length) { (1)

2

&e5) LLMs: Introduction and Recent Advances ' : l_| Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

94 = P(x(®)|the students opened their)

books laptops
A Simple RNN Language Model '
output distribution \ il 200 >
g = softmax (Uh(t) + b2> e RIVI o \JJv/h(l) <
ht xS
hidden states : m /
@@ W.e® +b) |@ >
— 2, (@) y®
R is the initial hidden state —) ©

word embeddings

e — Ep®

E

words / one-hot vectors h J J b
" % the students opene their

z®) e RV (D) (3 @) ~

Note: this input sequence could be much longer now! /

t@% LLMs: Introduction and Recent Advances : : i Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

94 = P(x(®)|the students opened their)
books

laptops

RNN Language Models

RNN Advantages:

* Canprocess any length input

e Computation for step t can (in h©)_
theory) use information from many steps @
back ©

@

* Modelsize doesn’tincrease for longer input (0]

context —

* Same weights applied on every

timestep, so there is symmetry in how inputs
are processed.

RNN Disadvantages:

* Recurrent computation is slow

* |n practice, difficult to access information
from many steps back

the students opened their
(L] 2(2) 2(3) 2@

@% LLMs: Introduction and Recent Advances : i Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Training an RNN Language Model

J

C

= negative log prob
of “students’

Loss === [7(1)(g J2)(6) J3)(0) J)(0)
Predlcted.prc?bat?lllty_, e 42 g3 g4
distributions
U U U U
h©)__ h h(2) h3) h(4)
@ @ @ e @
(W, |0 Wi |@|Wr |@| Wr |0 W) _
® ® 1@ 1@ 1@ .
e ‘. @ @ @
R ~ N N N
We W We We
(1) 2)| © 3) © (4 ©
eVl g el o e o el o
@) @) @) @)
Te Tz T& o
Corpus =— the students opened their
() e) (3 2
v | —T | |

exams

= negative log prob
of “opened”

Loss == (1) () J2)(6) J®)(6) J#(6)

[T

Predlcted.prgbaplllty > g e e e
distributions
U U U U
h©)__ h h(2) h3) h(4)
© ® O @) @)
@ W, |0 W, |@| Wi |0 Wr |0@| Wi
© © | @ 1K @ g
©® © O @) O
R e . N
We W, W, W,

o)

o o
2)| © (3) © (4)
el e el o e
@ @

{0000
1
1
(o000

Corpus =—> the students opened their exams
(1) 2 (2) 2 (3) (%)

= negative log prob
of “their”

Loss == (1) () J2)(6) J®)(6) J#(6)

[I

Predlcted.prgbaplllty > g e e e
distributions
U U U U
h©)__ h h(2) h3) h(4)
© ® O @) @)
@ W, |0 W, |@| Wi |0 Wr |0@| Wi
© © | @ 1K @ g
©® © O @) O
R e . N
We W, W, W,

o)

o o
2)| © (3) © (4)
el e el o e
@ @

{0000
1
1
(o000

Corpus =—> the students opened their exams
(1) 2 (2) 2 (3) (%)

= negative log prob

of “exams”
Loss =—— J)(9) J2) () J3(9) JD(9)
Predlcted.prc?bat?lllty_, e 42 g3 g4
distributions
U U U U
h©)__ h h(2) h3) h(4)
@ @ @ e @
(W, |0 Wi |@|Wr |@| Wr |0 W) _
® ® 1@ 1@ 1@ .
e ;. @ @ @
I T N N N
W, W, W, W,
(1) 2) © 3) © (4 ©
€’le| “le|l °“ le| ° o
@) @) @) @)
Te Tz T& o
Corpus =— the students opened their
() e) (3 2

exams

T
Loss = JU(@) + JO(@) + JO@O) + JH@) +. = J(@):%Zj(t)<0)
t=1

I I

Predlcted.prc?bat?lllty —_— 42 g3 g4
distributions
U U U U
h©)__ h h(2) h3) h(4)
: W, : %% o %% o W, ° W,
h _ h | @ h | @ h | @ h
® ® 1@ 1@ 1@
O] ‘. @ Q@ @
— - N N N
We We We We
(1) 2)| © 3) © 4| ©
e’le| “le|l “le| ¢ le
@) @) @) @)
Te Tz 1z s
Corpus =—> the students opened their exams

(1) 2(2) 2(3) 2@

Problems with RNNs

Vanishing and Exploding Gradients

h(4)

\ 4
(eo00@

Vanishing Gradient Intuition

h(L h() h3)
(] (] Q@
0 |14 0 14 0
O U v,
Q@ (] O
‘()‘_](_4)

Vanishing Gradient Intuition

J4) ()
R h(2) h(3) h4)
O O @ @
O w |e W __.|e . '
O 1@ 1@ :
° e ° °

aJ on® 9@

ohm — an(" 9p®@
Chain Rule!

Vanishing Gradient Intuition

J(9)
N
) R he_ i
o) o) o) O
O W |e w__|e . ’
O O (]
O O L O
0.J % ~ Oh'® y Oh® 9J@)
Oh™M — Hh(y oh® " 9RB)

Chain Rule!

Vanishing Gradient Intuition

J4(9)
N
() R RO AL
O O 0 O
0 W | @ w | @ W e
O 1@ 1@ 1@
O O O o
0. a.J
oh(l) Oh4)

Hain Rule!

Vanishing Gradient Intuition 79 (6)

RO R h_ Rl
(0) @ @ @ Vanishing gradient
: W > : W N © 14 > © problem: When these
o o : : are small, the gradient
-— -— -— - signal gets smaller and
smaller as it
57 5.7 backpropagates further
O™ oR®

What happens if these are small?

Effect of Vanishing Gradient on RNN-LM

LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After installing
the toner into the printer, she finally printed her

* To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7t step and the target word “tickets” at the end.

* Butifthe gradient is small, the model can’t learn this dependency
* So, the modelis unable to predict similar long-distance dependencies at test time

LSTMs & GRUs

LSTM

We have a sequence of inputs x(), and we will compute a sequence of hidden states h(t) and cell states

c(t), Ontimestep t:

A

Forget gate: controls what is kept vs
forgotten, from previous cell state

Sigmoid function: all gate

oot
,Ql:,,(_‘\. d)8-0')

(! Sl

5

‘/ / values are between 0 and 1
= ﬂ)

\/ Input gate: controls what parts of the
nevfcell contenrm are written to cell

l l
\/Cﬁutput gate: controls what parts of
cell are output to hidden state

v

New cell content: this is the new
content to be written to the cell

re vectors of same length n
—
ﬂ—"'
)

(™

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

AN
,/ h® = o0® gtanh w, ¢

jf ~ Gates are applied using element-wise

(or Hadamard) product: ©

Hidden state: read (“output”) some
content from the cell

5
=~ B
o -
=
6)/;:
T

ss —I_
18 Oq
| 3‘&3\
|

~

(@)

All thes
Ay
\

Gated Recurrent Units (GRUs)

/

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)

* Proposed by Choetal.in v
2014 as a simpler

"4
Update gate: controls what parts of
hiq,d‘gn state are updated vs preserved

alternative to the LSTM.

/

* Oneachtimestept, we
have input x(® and hidden

[Reset gate: controls what parts of

previous hidden state are used to
compute new content

\u(t) =0 (Wuh(t‘l) + U,z + bu)

W =4 (th“—l) +Uz® + br)

state h(® (no cell state).

"Learning Phrase Representations using RNN Encoder—
Decoder for Statistical Machine Translation", Cho et al.
2014, https://arxiv.org/pdf/1406.1078v3.pdf

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

/vil(t) = tanh (Wh ('r(t) o h(t_l)) + th(t) +0b
A® = (1 —u®)oh®D ¢ 4® o h®

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what is

updated to new hidden state content

https://arxiv.org/pdf/1406.1078v3.pdf

Sequence-to-Sequence
Modeling

Neural Machine Translation (NMT)

The Sequence-to-Sequence Model

Encoding of the source sentence.
Provides initial hidden state
for Decoder RNN.

N\

h J

0000

.

-
L

Encoder RNN

|

3 ——»

/!

il

N entar I'E‘)

v
Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

Neural Machine Translation (NMT)

The Sequence-to-Sequence Model Decoder RNNis a
| Target sentence (output) Language Model that
EﬂCOd”':lS of'theT slohu.;cde sentence. p A \ generates target
Provides initial hidden state he hit me with a pie <END> sentence, conditioned
for Decoder RNN. .
on encoding.
1 E: %\ %‘ : é‘ :
\ £ £ £ £ - £ =
P 20 oo po po R0 20 R0 W)
Z Y] 4] 4] 1] 1] 4] 4y (g»]
o 0 o) 0 o) o) 0 o) o} o) S
T @ |0 JO - O - O] =,]|0O o 0] 0] Q.
o @ |©® 10| 210 10| |0 ol =10 o @®
O] O o O o o 0] o o -
(&
: [| [T “ T :
L =
a__entarte, <START> he hit me with a pie

v
Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

Training an NMT System

= negative log = negative log = negative log
1 T prob of “he” prob of “with"” prob of <END>
Seq2seq is optimized as a J= ?Zh = N+ T2 + 1z HJal+ Js + J6 4 J7
. . t=1 L A A h A A)
single system. Backpropagation
operates “end-to-end”.
?1 ?2 ?3 ?4 ?5 ﬁﬁ ﬁ'?
A A A A A A A
=
=
o o E] ol (o] [e] (o] [o i] o
t S
2 ’le 0 o8 ol ool —le 10
S @ L o o o 0o o o o
Ll
il m’ a entarte <START> he hit me with a pie
\ J \ J
Y Y

Source sentence (from corpus) Target sentence (from corpus)

NNY Jopo2aq

Issues With RNN

* Linear interaction distance
* Bottleneck problem
* Lack of parallelizability

ATTENTION

Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

Target sentence (output)

A
4 A\

we had gone to the market <END>

Z
or o 0 o))
. e| |o ol | |o R
o 0] 1@ (0] 1@ .
3 e ® ® ®
c N
il T T T
g0 TR ™ 9

ham baajaar gaye the
N Jj gay' y

v
Source sentence (input)

A4

0000
0000

0000
0000

NNY Japoodaq

O o o
o o o
O O O
O o o

<START> we had gone the market

Any problems with this architecture?

Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

This needs to capture all
Information about the

Target sentence (output)

A
4 A\

we had gone to the market <END>

source sentence. -
Information
bottleneck!
% \
oc) 0 o| | (@]
o) o o o 1.0 >
o | 1O e| |O® i
S o (o |of | |o®
c /N
il T T T

g1 TR ™ d

ham baajaar gaye the
N Jj gay' y

v
Source sentence (input)

0000
\ 4
0000

0000

0000

NNY Japoodaq

O O O
O O @
O O O
(@ (@ (@

<START> we had gone the market

Sequence-to-Sequence With Attention

dot product

scores
—

oo)

Encoder Attention

RNN
I_H

g9 SR T f <START>

h baaj th
\ ham baajaar gaye e,

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

dot product

scores
—

Encoder Attention

RNN
I_H

1]

co——{e000]

gl SR ™ <START>
< ham baajaar gaye theJ
Y

Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

dot product

Attention
scores
—

S Z o
o Z 0
2o
L (@)
allum o] L <START>
< ham baajaar gaye the
Y

Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

dot product

scores
—

Encoder Attention

RNN
I_H

1]

C—> 0000

gl SR ™ <START>
< ham baajaar gaye theJ
Y

Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

Attention
distribution

Attention

Encoder

Scores

RNN

On this decoder timestep, we are mostly

{ / focusing on the first encoder hidden state

[s | | s |

Take softmax to turn the scores
into a probability distribution

(0] (@) (0]
(0] @ (0]
(0] @ (0]
(0] @ (0
gl SR ™ :L <START>
N ham baajaar gaye theJ

v
Source sentence (input)

NN4
1apooag

Sequence-to-Sequence With Attention

Attention
distribution

Attention

Encoder

Scores

RNN

Attention

output

Use the attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden states that
received high attention.

g9 dNR T

ham baajaar gaye theJ

v
Source sentence (input)

<START>

NN4
1apooag

Sequence-to-Sequence With Attention

Attention
distribution

Attention

Encoder

Scores

RNN

Attention we
output A

—> 0000
—> 0000

—]

g9 SR T <START>

h baaj th
\ ham baajaar gaye e,

v
Source sentence (input)

Concatenate attention output
with decoder hidden state, then
use to compute y, as before

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

Attention

Attention
distribution

Attention

Encoder

Scores

RNN

) o) 0 (0] (o
o [of Jo| .|o Jol .o
| |O | |© 10 o
0] @ (0] (0] 0] 0]
gH dNR T l <START> we
prasss
< ham baajaar gaye theJ

v
Source sentence (input)

Sometimes we take the
attention output from the
previous step, and also feed it
into the decoder (along with
the usual decoderinput).

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

Attention gone
output A

1“ -
R
.‘ .‘
. -
o 3 .
o 0 .,
. K . A
+* » .
- - "
o 3 .,
* L .
.
'-' - v.
k
.0' ..
B e |

Attention
distribution

Attention
scores
—

o) o) o) [o‘ o) o)
L e| .|o @ 0 ol .|o
o £ o ‘|@ ‘@ ’lo ol °|o
T o) o) 0 0 0 o)
g7 dNR T l <START> we
< ham baajaar gaye theJ

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

: Attention to
®| output T
Q| __

- STRE, IS
E _8 ““‘«::.’ . . ! %‘:4
O T I:I
£ 5 _
ks
C
o wm
S 3
g 3 {

z n
o o) (e] [e] [e [F ol [o] (o
L o o] ol .|@® Jo ol .o 0
O | |O e| 10 10 ol 10 0}
T (] o o o o o o o
gH dlum) l <START> we had gone
< ham baajaar gaye the

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

(0] .

e | Attention h

®| output

o P 1
y
/

L

\q ,-\ F‘
o RS
o2 . .
50 B s
S 5

Attention
distribution
—
—1

Attention
scores
7\f‘\

\4

—> 0000

A4

—> 0000

A4

\ 2
—> 0000
000

oovoﬂ

—> 0000

Encoder

RNN
—M
— 0000

—>1 0000

Qo
Q
Q
Q
g1 dlum o} l <START> we had gone to

\ham baajaar gaye the

v
Source sentence (input)

NN4
1ap0ooa(

Sequence-to-Sequence With Attention

: Attention market
®| output T
0]

c 5 f’ﬁ

O 5 A

g3

O ‘T

£ 5

ks

C

o wm

S 3

2 9

z (7p]

o ol (e 0 [F ol [o] [o o] (o

L o| |o e Jo| _Jo| Jo| .Je| .Jo| .|o

o £ o[@ ‘| @ lo[o o[‘lo[e[o

T () o (¢} o 0 o o O o

gH WNR M l <START> we had gone to the
< ham baajaar gaye theJ

v
Source sentence (input)

NN4
1ap0ooa(

Attention is Great

e Attention significantly improves NMT performance
* [t’s very useful to allow decoder to focus on certain parts of the source

e Attention solves the bottleneck problem
* Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with vanishing gradient problem
* Provides shortcut to faraway states

e Attention provides some interpretability

* By inspecting attention distribution, we can see what the decoder was
focusing on

* We get (soft) alignment for free!
* Thisis cool because we never explicitly trained an alignment system
* The networkjust learned alignment by itself

m’

entarté

he

hit

me

with

pie

Attention is a General Deep Learning Technique

* \We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine
Translation.

 However: You can use attentionin many architectures (not just seg2seq) and many tasks (not just MT)
* More general definition of attention:

 Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the
values, dependent onthe query.

* We sometimes say that the query attends to the values.

 For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the
encoder hidden states (values).

e |ntuition:

* The weighted sum is a selective summary of the information contained in the values, where the query determines
which values to focus on.

* Attention is a way to obtain a fixed-size representation of an arbitrary set of representations
(the values), dependent on some other representation (the query).

75

Variants of Attention

e Original formulation: a(q,k) = w, tanh(W,[q; Kk])
e Bilinear product: a(q,k) = q' Wk Luong et al, 2015

o Dot pI’OdUC’[: a(q, k) = qu Luong et al., 2015

T

q'k

® Scaled dot product: a(q, k) =
VALY

Vaswani et al., 2017

More information:

“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,
https://arxiv.org/pdf/1703.03906.pdf

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf

Self-Attention

	Default Section
	Slide 1
	Slide 2: REMINDER
	Slide 3: Next Word Prediction
	Slide 4: Probabilistic Language Models
	Slide 5: Estimate Conditional Probabilities
	Slide 6: Markov Assumption
	Slide 7: N-gram Language Models
	Slide 8: Limitation of N-gram Language Models
	Slide 9: Evaluation of a Language Model
	Slide 10: Extrinsic Evaluation
	Slide 11: Intrinsic Evaluation: Perplexity

	Default Section
	Slide 12
	Slide 13: How to Build a Neural Language Model?
	Slide 14: A Fixed-window Neural Language Model
	Slide 15: A Fixed-window Neural Language Model
	Slide 16: Recurrent Neural Networks (RNN)
	Slide 17: A Simple RNN Language Model
	Slide 18: RNN Language Models
	Slide 19: Training an RNN Language Model
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Problems with RNNs
	Slide 26: Vanishing and Exploding Gradients
	Slide 27: Vanishing Gradient Intuition
	Slide 28: Vanishing Gradient Intuition
	Slide 29: Vanishing Gradient Intuition
	Slide 30: Vanishing Gradient Intuition
	Slide 31: Vanishing Gradient Intuition
	Slide 32: Effect of Vanishing Gradient on RNN-LM
	Slide 33: LSTMs & GRUs
	Slide 34: LSTM
	Slide 35: Gated Recurrent Units (GRUs)
	Slide 36: Sequence-to-Sequence Modeling
	Slide 37: Neural Machine Translation (NMT)
	Slide 38: Neural Machine Translation (NMT)
	Slide 39: Training an NMT System
	Slide 40: Issues With RNN
	Slide 41: Sequence-to-Sequence: The Bottleneck Problem
	Slide 42: Sequence-to-Sequence: The Bottleneck Problem
	Slide 43: Sequence-to-Sequence With Attention
	Slide 44: Sequence-to-Sequence With Attention
	Slide 45: Sequence-to-Sequence With Attention
	Slide 46: Sequence-to-Sequence With Attention
	Slide 47: Sequence-to-Sequence With Attention
	Slide 48: Sequence-to-Sequence With Attention
	Slide 49: Sequence-to-Sequence With Attention
	Slide 50: Sequence-to-Sequence With Attention
	Slide 51: Sequence-to-Sequence With Attention
	Slide 52: Sequence-to-Sequence With Attention
	Slide 53: Sequence-to-Sequence With Attention
	Slide 54: Sequence-to-Sequence With Attention
	Slide 55: Attention is Great
	Slide 56: Attention is a General Deep Learning Technique
	Slide 57: Variants of Attention
	Slide 58: Self-Attention

