
Introduction to
Language Models

Tanmoy Chakraborty
Associate Professor, IIT Delhi

https://tanmoychak.com/

REMINDER
You are advised to study the

first 10 lectures (till Lec
6.1) of the previous year’s
course playlist before the
next class on August 4.

Otherwise, you will not be
able to follow. Here’s the link

to the playlist:

https://lcs2.in/llm2401

Last year’s (2024) offering

https://lcs2.in/llm2401

Tanmoy Chakraborty Introduction to LLMs

Next Word Prediction

Guess the next word in the sequence…

I like pizza with loads of ______.

cheese
P(cheese | I like pizza with loads of)

tree

P(tree | I like pizza with loads of)

corn
P(corn | I like pizza with loads of)

Previous words in the sentence Word to be
predicted

P(cheese| I like pizza with loads of) > P(corn| I like pizza with loads of) >> P(tree| I like pizza with loads of)

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Probabilistic Language Models
• Goal: Calculate the probability of a sentence or sequence consisting of n words

P(W) = P(w1, w2, w3, ... , wn)

or

• Related Task: Calculate the probability of the next word conditioned on the preceding
words

P(w6 | w1, w2, w3, w4, w5)

A model that calculates either of these is referred to as a Language Model (LM).

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Estimate Conditional Probabilities

P(begun | The monsoon season has) = Count (The monsoon season has begun)
Count (The monsoon season has)

• Problem: Enough data is not available to get an accurate estimate of the above
quantities.

• Solution: Markov Assumption

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Markov Assumption
Every next state depends only the previous k states

• Chain Rule:

P(w1w2 ...wn) = ς𝑖 P(w i |w1w2 … w i−1
)

• Applying Markov Assumption we condition on only the preceding k words:

P(w1w2 ...wn) = ς𝑖 P(w i |w i−k … w i−1
)

• Probabilistic Language Models exploit the Chain Rule of Probability and Markov
Assumption to build a probability distribution over sequences of words.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

N-gram Language Models
• Let’s consider the following conditional probability:

P(begun | the monsoon season has)

• An N-gram model considers only the preceding N −1 words.
• Unigram: P(begun)
• Bigram: P(begun | the)
• Trigram: P(begun | the monsoon)

Relation between Markov model and Language Model:

An N-gram Language Model ≡ (N −1) order Markov Model

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Limitation of N-gram Language Models
• An insufficient model of language since they are not effective in capturing long-range

dependencies present in language.

• Example:

 The project, which he had been working on for months, was finally approved by the
committee.

 The above example highlights the long-distance dependency between “project” and “approved”,
where the context provided by earlier words affects the interpretation of later parts of the sentence.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Evaluation of a Language Model
• Does our language model prefer good sentences to bad ones?

• Assign higher probability to “real” or “frequently observed” sentences than “ungrammatical” or “rarely
observed” sentences

• Terminologies:
• We optimize the parameters of our model based on data from a training set.
• We assess the model's performance on unseen test data that is disjoint from the training data.
• An evaluation metric provides a measure of the performance of our model on the test set.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Extrinsic Evaluation
• Measure the effectiveness of a language model by testing their performance on

different downstream NLP tasks, such as machine translation, text classification,
speech recognition.

• Let us consider two different language models: A and B
• Select a suitable evaluation metric to assess the performance of the language models based on the

chosen task.
• Obtain the evaluation scores for A and B
• Compare the evaluation scores for A and B

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Tanmoy Chakraborty Introduction to LLMs

Intrinsic Evaluation: Perplexity
Thus, for the sentence W, perplexity is:

PP(W) = P(w1w2 ...wn)−
1

𝑛

 Applying Chain Rule:

PP(W) = ς
1

P(w i |w1w2 ...w i−1
)

1

𝑛

 Applying Markov Assumption (n = 2), i.e. for bigram LM:

PP(W) = ς
1

P(w i |w i−1
)

1

𝑛

Minimizing perplexity is the same as maximizing probability.

https://home.iitd.ac.in/
https://www.lcs2.in/
https://nptel.ac.in/

Neural Language Models

Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

How to Build a Neural Language Model?
• Recall the Language Modeling task:

• Input: sequence of words 𝒙(𝟏), 𝒙(𝟐), … , 𝒙(𝒕)

• Output: probability distribution of the next word 𝑷 𝒙 𝒕+𝟏 𝒙 𝒕 , … , 𝒙 𝟏

• How about a window-based neural model?
Example: NER Task

in Paris are amazingmuseums

LOCATION

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

A Fixed-window Neural Language Model

concatenated word embeddings

words / one-hot vectors

hidden layer

output distribution

books
laptops

a zoo

their as the proctor started the clock
discard

the students opened

fixed window

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

A Fixed-window Neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-

grams We need a neural
architecture that can
process any length

input

Approximately: Y.Bengio, et al.
(2000/2003): A Neural Probabilistic

Language Model

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

Recurrent Neural Networks (RNN)

hidden states

input sequence
(any length)

outputs
(optional)

Core idea: Apply the same
weights𝑊 repeatedly

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

A Simple RNN Language Model

words / one-hot vectors

word embeddings

the students opened their

books
laptops

a zoooutput distribution

Note: this input sequence could be much longer now!

hidden states

 is the initial hidden state

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

RNN Language Models

the students opened their

books
laptops

a zooRNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from many steps
back

• Model size doesn’t increase for longer input
context

• Same weights applied on every
timestep, so there is symmetry in how inputs
are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access information

from many steps back

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Training an RNN Language Model

…

Corpus the students opened their exams …

Loss

Predicted probability
distributions

= negative log prob
of “students”

Corpus the students opened their exams

Loss

Predicted probability
distributions

= negative log prob
of “opened”

…

…

Corpus the students opened their exams

Loss

Predicted probability
distributions

= negative log prob
of “their”

…

…

Corpus the students opened their exams

Loss

Predicted probability
distributions

= negative log prob
of “exams”

…

…

Corpus the students opened their exams

Loss

Predicted probability
distributions

…

…

+ + + + … =

Problems with RNNs

Vanishing and Exploding Gradients

Vanishing Gradient Intuition

Vanishing Gradient Intuition

Chain Rule!

Vanishing Gradient Intuition

Chain Rule!

Vanishing Gradient Intuition

Chain Rule!

What happens if these are small?

Vanishing gradient
problem: When these
are small, the gradient
signal gets smaller and

smaller as it
backpropagates further

Vanishing Gradient Intuition

Effect of Vanishing Gradient on RNN-LM
• LM task: When she tried to print her tickets, she found that the printer was out of toner.

She went to the stationery store to buy more toner. It was very overpriced. After installing
the toner into the printer, she finally printed her

• To learn from this training example, the RNN-LM needs to model the dependency
between “tickets”on the 7th step and the target word “tickets”at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time

LSTMs & GRUs

We have a sequence of inputs 𝑥(𝑡), and we will compute a sequence of hidden states ℎ(𝑡) and cell states
𝑐(𝑡). On timestep t:

LSTM

Output gate: controls what parts of
cell are output to hidden state

Al
lt

he
se

ar
e

ve
ct

or
s

of
sa

m
e

le
ng

th
n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

Gates are applied using element-wise
(or Hadamard) product: ⊙

⊙ ⊙

⊙

Gated Recurrent Units (GRUs)
• Proposed by Cho et al. in

2014 as a simpler
alternative to the LSTM.

• On each timestep t, we
have input 𝑥(𝑡) and hidden
state ℎ(𝑡) (no cell state).

"Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation", Cho et al.
2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what is
updated to new hidden state content

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)

https://arxiv.org/pdf/1406.1078v3.pdf

Sequence-to-Sequence
Modeling

Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.

Neural Machine Translation (NMT)

Source sentence (input)

The Sequence-to-Sequence Model

Encoder RNN produces an encoding of the source sentence.
Note: This diagram shows test time
behavior: decoder output is fed in as

next step’s input

Decoder RNN is a
Language Model that

generates target
sentence, conditioned

on encoding.

Training an NMT System

Seq2seq is optimized as a
single system. Backpropagation

operates “end-to-end”.

Issues With RNN
• Linear interaction distance
• Bottleneck problem
• Lack of parallelizability

ATTENTION

Sequence-to-Sequence: The Bottleneck Problem

En
co

de
rR

N
N

<START> we had gone to the market

we had gone to the market <END>

D
ecoderRN

N

Any problems with this architecture?

Encoding of the source sentence
 Target sentence (output)

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence: The Bottleneck Problem

En
co

de
rR

N
N

<START> we had gone to the market

we had gone to the market <END>

D
ecoderRN

N
Encoding of the source sentence

 Target sentence (output)

Information
bottleneck!

This needs to capture all
information about the

source sentence.

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence With Attention
En

co
de

r
RN

N

<START>

D
ecoder
RN

N
At

te
nt

io
n

sc
or

es

dot product

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence With Attention
En

co
de

r
RN

N

<START>

At
te

nt
io

n
sc

or
es

dot product
D

ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence With Attention
En

co
de

r
RN

N

<START>

At
te

nt
io

n
sc

or
es

dot product
D

ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence With Attention
En

co
de

r
RN

N

<START>

At
te

nt
io

n
sc

or
es

dot product
D

ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence With Attention
En

co
de

r
RN

N

<START>

At
te

nt
io

n
sc

or
es

On this decoder timestep, we are mostly
focusing on the first encoder hidden state

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

D
ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Sequence-to-Sequence With Attention

En
co

de
r

RN
N

<START>

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden

states.

The attention output mostly contains
information from the hidden states that

received high attention.

D
ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

En
co

de
r

RN
N

<START>

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es

Attention
output

we

Sequence-to-Sequence With Attention

Concatenate attention output
with decoder hidden state, then
use to compute ŷ1 as before

D
ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

En
co

de
r

RN
N

<START> we

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

had

Sometimes we take the
attention output from the
previous step, and also feed it
into the decoder (along with
the usual decoder input).

Sequence-to-Sequence With Attention

D
ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

En
co

de
r

RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

gone

Sequence-to-Sequence With Attention

D
ecoder
RN

N

<START> we had

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

En
co

de
r

RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

to

Sequence-to-Sequence With Attention

D
ecoder
RN

N

<START> we had gone

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

En
co

de
r

RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

the

Sequence-to-Sequence With Attention

D
ecoder
RN

N

<START> we had gone to

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

En
co

de
r

RN
N

<START> we

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

had gone to the

market

Sequence-to-Sequence With Attention

D
ecoder
RN

N

Source sentence (input)

हम बाजार गये थे
ham baajaar gaye the

Attention is Great
• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source
• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we can see what the decoder was

focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself

h
e

h
it

m
e

w
it
h

a p
ie

il

a

m’

entarté

Attention is a General Deep Learning Technique
• We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine

Translation.
• However: You can use attention in many architectures (not just seq2seq) and many tasks (not just MT)
• More general definition of attention:

• Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the
values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the

encoder hidden states (values).
• Intuition:

• The weighted sum is a selective summary of the information contained in the values, where the query determines
which values to focus on.

• Attention is a way to obtain a fixed-size representation of an arbitrary set of representations
 (the values), dependent on some other representation (the query).

75

Variants of Attention

More information:
“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,
https://arxiv.org/pdf/1703.03906.pdf

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf

Self-Attention

	Default Section
	Slide 1
	Slide 2: REMINDER
	Slide 3: Next Word Prediction
	Slide 4: Probabilistic Language Models
	Slide 5: Estimate Conditional Probabilities
	Slide 6: Markov Assumption
	Slide 7: N-gram Language Models
	Slide 8: Limitation of N-gram Language Models
	Slide 9: Evaluation of a Language Model
	Slide 10: Extrinsic Evaluation
	Slide 11: Intrinsic Evaluation: Perplexity

	Default Section
	Slide 12
	Slide 13: How to Build a Neural Language Model?
	Slide 14: A Fixed-window Neural Language Model
	Slide 15: A Fixed-window Neural Language Model
	Slide 16: Recurrent Neural Networks (RNN)
	Slide 17: A Simple RNN Language Model
	Slide 18: RNN Language Models
	Slide 19: Training an RNN Language Model
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Problems with RNNs
	Slide 26: Vanishing and Exploding Gradients
	Slide 27: Vanishing Gradient Intuition
	Slide 28: Vanishing Gradient Intuition
	Slide 29: Vanishing Gradient Intuition
	Slide 30: Vanishing Gradient Intuition
	Slide 31: Vanishing Gradient Intuition
	Slide 32: Effect of Vanishing Gradient on RNN-LM
	Slide 33: LSTMs & GRUs
	Slide 34: LSTM
	Slide 35: Gated Recurrent Units (GRUs)
	Slide 36: Sequence-to-Sequence Modeling
	Slide 37: Neural Machine Translation (NMT)
	Slide 38: Neural Machine Translation (NMT)
	Slide 39: Training an NMT System
	Slide 40: Issues With RNN
	Slide 41: Sequence-to-Sequence: The Bottleneck Problem
	Slide 42: Sequence-to-Sequence: The Bottleneck Problem
	Slide 43: Sequence-to-Sequence With Attention
	Slide 44: Sequence-to-Sequence With Attention
	Slide 45: Sequence-to-Sequence With Attention
	Slide 46: Sequence-to-Sequence With Attention
	Slide 47: Sequence-to-Sequence With Attention
	Slide 48: Sequence-to-Sequence With Attention
	Slide 49: Sequence-to-Sequence With Attention
	Slide 50: Sequence-to-Sequence With Attention
	Slide 51: Sequence-to-Sequence With Attention
	Slide 52: Sequence-to-Sequence With Attention
	Slide 53: Sequence-to-Sequence With Attention
	Slide 54: Sequence-to-Sequence With Attention
	Slide 55: Attention is Great
	Slide 56: Attention is a General Deep Learning Technique
	Slide 57: Variants of Attention
	Slide 58: Self-Attention

