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Knowledge Distillation (KD): Types
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Knowledge Distillation (KD): Types
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Divergence and Similarity Functions
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Divergence Type D(p. q) Function
Forward KLD > p(t) log 24 ’ o
NeverseKLD m;
/5 Divergence ! (Z p(t) log s + - q(t) log #{t«:}m)
Similarity Function Lp Expression
L2-Norm Distance |®7(fr(z,y)) — Ps(fs(z,y))l2
L1-Norm Distance |Pr(fr(z,y)) — Ps(fs(z,y))|
Cross-Entropy Loss =2 ®r(fr(z,y))log(®s(fs(z,y)))

Maximum Mean Discrepancy  MMD(® ¢ (fr(z,y)), Ps(fs(z,y)))
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Categories of KD

(/ White-box KD: Full access to the teacher’s internal components (logits, hidden \
states, attention maps)

Meta KD: Teacher helps guide student training strategies (e.g., data selection,
/curriculum)

\/Black-box KD: Only the final output of the teacher is available, e.g., via API /
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KD for Language Models

Kim and Rush_2_9_j_§_ extended the idea to word-level and sequence-level KD for language
models, which aligns the student model with the teacher’s output distributions
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KD for Language Models

4 N
- Applied in sequence generation tasks (e.g., machine translation)

- Student model s trained using the teacher’s best decoded sequence (e.g., via beam

search)
J
\
Advantages:
- Instead of label sequences, student mimics the teacher's generation process
- Better for long-form tasks like summarization or machine translation
\_ J
] N
Disadvantages:
- Beam search is computationally expensive
- Generated sequences may propagate teacher’s errors
\_ — J
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KD for LLMs —MiniLLM (Gu et al. 2023)

4 « MiniLLM (Gu et al. 2023) replace the forward Kullback-Leibler divergence (KLD) objective in the
standard KD approaches with reverse KLD, which is more suitable for KD on generative language
models.

«  This prevents the student model from overestimating the low-probability regions of the teacher
\_ distribution. = — ~ Y,

ﬁ Toaher 20— | l— Teacher O S :

i . \ " Forward KLD” : Prompt x — Stxdent —2—3¢___,; ReverseKLD :
TOmPS T : £8) = KLIpllge) : = ' . L(6) = KLigollp] :
RSO ey VL(6)(Secton22)
Sequence-Level KD MiniLLM

Advances in Large Language Models L Tanmoy Chakraborty



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

KD for LLMs — GKD (Agarwal et al. 2024)

-

« |Instead of solely relying on a fixed set of output sequences, GKD trains the student on |t{§elf-

«  Current KD methods for auto-regressive sequence models suffer from distribution mismatch between
output sequences seen during training and those generated by the student during inference.

~

seqguences by leveraging feedback from the teacher on such se\wences

\_ generated output (SGO)
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Adaptive SGO for KD - DistiLLM (Ko et al. 2024)

/ »  Generating SGO for each step can increase distillation time significantly. Ko et al., suggested an
adaptive method with replay buffer to adaptively determine when to generate SGO vs. when to use
original ground truth texts for distilling knowledge.

~

« KD optimization stability depends on the smoothness of the distillation loss objective. Ko et al.,
\ suggested a skewed divergence loss, where a mixture probability of teacher and student logits is usedj
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Confidence-Concentrated Loss for KD — ABKD
(Wang et al. 2025)

.

Traditional distillation loss functions — forward KLD and reverse KLD tackles two different properties —\
while FKLD makes student distribution overly smoothened (higher recall), RKLD captures prominent
modes of the teacher (higher precision).

Wang et al., proposed a weighted scheme between FKLD and RKLD, capturing the confidence and

hardness of teacher-student output probabilities. ABKD is a generalized variation of the popularly
\ used divergence-based loss functions used in KD.

/
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Limitations of Vanilla KD

: : - Learning
[% Sklll/Domam] [ el ]

— —
= =
Seed b |

& Khowecoe ) Student Model E

————————————————————

capacity . -

Advances in Large Language Models



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

kDl

/ S
KD with Meta Learning — Zhou et al., 2022 IZ}Q

/- Traditional KD approaches are uni-directional, i.e., teacher is mostly trained prior to the KD process;\
therefore, teacher is unaware of the student’s capacity.
«  The teacher pre-training procedure is not optimized for distillation purposes; good model may not be
always a good teacher
 To address these challenges, Zhou et al., proposed a meta-KD method where the teacher modelis
also trained in a meta loop, enabling better knowledge dissipation in the subsequent KD step.
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MPDistil: Student-Aware Meta Distillation: Learning to teach

e A healthy competition between the teacher
and student can encourage both the models
to perform better.

o A better teacher can set a higher
benchmark for the student, enhancing
student’s performance.

o The student can devise better learning
strategy (curriculum) to perform better than
the teacher.

Step 1: Teacher fine-tuning
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Sengupta, Dixit, Akhtar, Chakraborty. A Good Learner Can Teach Better: Teacher-Student Collaborative Knowledge Distillation((CLR 2024.
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MPDistil: Step 1 -- Teacher Fine-tuning

1. Teacher Fine-tuning
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MPDistil: Step 2 -- Student Distillation

1. Teacher Fine-tuning 2. Student Distillation
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MPDistil: Step 3 -- Meta-teacher Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning
(on a quiz dataset)
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Intuition: The meta-teacher obtains the hidden states from both teacher and student and creates a healthy
competition between the models.
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MPDifstil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning 2. Student Distillation , 3. Teacher Meta Learning
(on a quiz dataset)
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MPDistil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning

(on a quiz dataset)
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ICLR’24
A “smart” student can beat a teach!!

Methods BoolQ g CB COPA RTE WIC WSC

KD Hinton et al. (2015) 133 -19.1 43 37 91 -144

PD Turc et al. (2019) t 96 95 -03 -13.5 -69 -11.2

PKD Sun et al. (2019) ‘17 59 60 38 -04 -125

DistilBERT Sanh et al. (2019) 60 77 -1.0 -120 -58 -93

Theseus Xu et al. (2020) ‘16 36 43 48 -1.8 -11.5 -
TinyBERT Jiao et al. (2019) ‘14 -12 43 37 1.7 29 @—

MobileBERT Sun et al. (2020) { 48 24 07 -140 -23 -93 '\

SID Aguilar et al. (2020) 1 101 -17.3  -1.0  -148 90 -12.8 ?

MiniLM Wang et al. (2020b) t 35  -119 40 53 -12 -144

MiniLMv2 Wang et al. (2020a) 1 27  -143 40 63 -25 -15.1

ALP-KD Passban et al. (2021) 1 22  -113 -53 48 -13 -13.1

LRC-BERT Fu et al. (2021) 1 45 95 -03 -164 -85 -11.2

Annealing-KD Jafari et al. (2021) 1 88  -5.9 33 -140 -63 -11.2

CKD Park et al. (2021) { 78 66 -1.0 -11.7 -73 -11.2

Universal-KD Wu et al. (2021a) { -1.8 -5.4 -1.3 -28 06 -11.2 Positive value
DIITO Wu et al. (2021b) t 39 59 6.0 75 54 86 .
Continuation-KD Jafari et al. (2022)+ -80  -7.1 2.7  -142 -79 -13.1 Indicates the
RAIL-KD Haidar et al. (2021) { 104 7.7 07 -124 -58 -717 student model is
MGSKD Liu et al. (2022a)) 6.1  -6.6 -1 0 70 30 -12.8 better than the
I o et al f?ﬂ?l“ﬁ =27 _7 ] _1 (1 Q)

MPDistil (Ours) - 19 @ ‘ @ a teacher model
(-) Curriculum learning -2.8 .0

Advances in Large Langua

oy Chakraborty


https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sengupta et al. ACL (Findings) 2025

Explaining Knowledge Distillation

Known: KD improves generalization abilities of student models.

g

Questions

(i) Post-KD, does student perfectly imitate a teacher?
(i) What are the key drivers influencing the effectiveness of KD methods?
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Agreement b/w Teacher-Student Post-KD

14B -> 7B -
AQuA AQuA AQuA

/
14 -/ 14B -> 1.5B 14B -> 3B ~
g/’\

N < [

T ) N on\
AddSub \SingleEq AddSub 70 SingleEq AddSub” 70 \SingleEq AddSub
<8 60 - 60
GSM8k : SVAMP  GSM8k AMP  GSM8k AMP  GSM8k
— ¥ s \ e =

MultiArith MultiArith MultiArith MultiArith

—

—— Agreement before KD ——— Agreement after KD

Agreement: Overlap between the final output generated by teacher and students.

L —

“Teacher-student agreement improves post KD, mostly for smaller LMs (<7B).
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Fidelity b/w Teacher-Student Post-KD

14B -> 0.5B 14B -> 1.5B 14B -> 3B 14B -> 7B

AQuA AQuA AQuA AQuA
60 6

AddS tngleEq  AddS tngleEq  AddSub

50 50

GSM AMP  GSM AMP  GSM8 JAMP

MultiArith MultiArith MultiArith MultiArith

— Reasoning fidelity before KD —— Reasoning fidelity after KD Student self-reasoning fidelity

*Fidelity: Ability of the student to imitate the teacher’s reasoning behaviors.

« Smaller LMs tend to have better fidelity post-KD.
« However, statistical tests show that fidelity does not necessarily improve the generalization
abilities of student models!!
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Fidelity vs Generalization Paradox of KD

Instruction

Student KD Output

Teacher SFT Output

Fidelity

Robin has 28 packages of
gum and 13 packages of
candy. There are 4 pieces
in each package. How
many pieces of gum does
Robin have?

To solve this problem, we need

1. Identify the given information:
Robin has 28 packages of gum
and 13 packages of candy. Each
package has 4 pieces of gum and
candy.

2. Determine the operation
needed to find the total number of
pieces of gum: We need to mul-
tiply the number of packages of

gum by the number of pieces of
gum in each package.

3. Multiply: 28 by 4 to find the
total number of pieces of gum.

%‘ces

Therefore, Robin has 5

of gum.<lendoftextl>

Advances in Large Language Models

to use multiplication. ]

To solve this problem, we need
to use multiplication. 1. Multiply
the number of packages of gum
by the number of pieces in each
package:

pieces of gum I/'

2. Therefore, Robin has 112
pieces of gum.

The answer in Arabic numerals
is: 112.<lendoftextl>

*High teacher-student
fidelity, but wrong answer
predicted by student (poor

generalization)
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Fidelity vs Generalization Paradox of KD

Instruction

Student KD Output

Teacher SFT Output

Fidelity

Because of the decision
Sofia asked 310 students
to suggest specific types
of food. 185 students
suggested adding mashed
potatoes while others sug-
gested adding bacon to
the menu. How many stu-
dents suggested bacon?

To solve the problem, we can use
subtraction:number of studen
= 3100f students who suggeste
mashed potatoes = 185find th
number of students who su
gested bacon, we subtract th
number of students who sug
gested mashed potatoes from
total number of students:

o
Therefore, students sug-
gested addimg bacon to the

menu.<lendoftextl>

We can start by using the concept
of complementary counting. Let
x be the number of students who
suggested bacon. We know that
the total number of students is
310, so we can set up an equations/
185 + x = 310 Subtracting 185
from both sides:
Simplifying: x herefore,
125 students suggested adding
bacon to the menu. Answer:
125 .<lendoftextl>

|_ow teacher-student

fidelity, but good
generalization

Therefore, the tradeoff between generalization vs fidelity-agreement remains prominent.
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Drivers behind Successful KD

I KD with Task-Aware Teacher B KD with Task-Unawari Teacher
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Student Model

1. Teacher model should be task-aware
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I KD with Task-Aware Teacher B KD with Task-Unaware Teacher @ mm o=1 mm oc=2 mmm 0=5
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0 3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B 0 3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model Student Model
1. Teacher model should be task-aware 2. Teacher signals to student should be
noise-free.

Here o is the amount of Gaussian noise added to the
teacher logits before distilling to student. For o, student
performance drops drastically.

Teacher model performance minimally affects student outcomes; however, the

adv teacher’s task-specific expertise is crucial aborty
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Z20

I KD with Task-Aware Teacher B KD with Task-Unaware Teacher

3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model

1. Teacher model should be task-aware
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‘ 3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model

2. Teacher signals to student should be

noise-free.

Here o is the amount of Gaussian noise added to the
teacher logits before distilling to student. For g, student
performance drops drastically.

Average Accuracy
H N W A U O N
o O o o o o o o

mm t=1 mm t=2 mm t=5

3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model

3. Logit smoothing is important
Here 7 is the temperature used to
smoothen the teacher logits. Too much
smoothing hurts student performance, but
moderate smoothing shows benefit.

Advances in Large Language Models

Temperature () in KD balances precision (7 1) and recall (z T) of the student model.
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