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Qwen-3-Next-80B-A3B
The first in the series of next-generation foundation models that are optimized for 

extreme context length and large-scale parameter efficiency

Qwen-3-Next-80B-
A3B introduces several 
architectural innovations to 
maximize performance 
while minimizing 
computational cost. It uses 
a combination of Gated 
DeltaNet and Gated 
Attention, enabling efficient 
context modeling for ultra-
long sequences.

Announced on 
September 12, 2025

Qwen-3-Next-Blog

Qwen3-Next-80B-A3B uses 
a highly sparse MoE design, 
having a total of 80 billion 
parameters with only 3 
billion activated, making it 
highly efficient. A thinking 
version is also released 
along with the base model.

https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
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Knowledge Distillation (KD): Types
Teacher model generate 

soft labels (logits)

Teacher generated logits 

used to fine-tune the 

student

Hinton et al., 2015
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Knowledge Distillation (KD): Types
Teacher model generate 

soft labels (logits)

Teacher generated logits 

used to fine-tune the 

student

Hinton et al., 2015 Distance between 

layer-wise 

representations 

used to enforce 

student model to 

imitate the teacher

Sun et al., 2019
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Divergence and Similarity Functions
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Categories of KD

● White-box KD: Full access to the teacher’s internal components (logits, hidden 
states, attention maps)

● Meta KD: Teacher helps guide student training strategies (e.g., data selection, 
curriculum)

● Black-box KD: Only the final output of the teacher is available, e.g., via API

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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KD for Language Models

Kim and Rush 2016 extended the idea to word-level and sequence-level KD for language 
models, which aligns the student model with the teacher’s output distributions
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KD for Language Models

• Applied in sequence generation tasks (e.g., machine translation)
• Student model is trained using the teacher’s best decoded sequence (e.g., via beam 

search)

Advantages:
• Instead of label sequences,  student mimics the teacher's generation process
• Better for long-form tasks like summarization or machine translation

Disadvantages:
• Beam search is computationally expensive
• Generated sequences may propagate teacher’s errors

https://www.lcs2.in/
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KD for LLMs – MiniLLM (Gu et al. 2023)

• MiniLLM (Gu et al. 2023) replace the forward Kullback-Leibler divergence (KLD) objective in the 
standard KD approaches with reverse KLD, which is more suitable for KD on generative language 
models.

• This prevents the student model from overestimating the low-probability regions of the teacher 
distribution.

https://www.lcs2.in/
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KD for LLMs – GKD (Agarwal et al. 2024)
• Current KD methods for auto-regressive sequence models suffer from distribution mismatch between 

output sequences seen during training and those generated by the student during inference.

• Instead of solely relying on a fixed set of output sequences, GKD trains the student on its self-
generated output (SGO) sequences by leveraging feedback from the teacher on such sequences.

https://www.lcs2.in/
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Adaptive SGO for KD – DistiLLM (Ko et al. 2024)
• Generating SGO for each step can increase distillation time significantly. Ko et al., suggested an 

adaptive method with replay buffer to adaptively determine when to generate SGO vs. when to use 
original ground truth texts for distilling knowledge.

• KD optimization stability depends on the smoothness of the distillation loss objective. Ko et al., 
suggested a skewed divergence loss, where a mixture probability of teacher and student logits is used.
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Confidence-Concentrated Loss for KD – ABKD 
(Wang et al. 2025)

• Traditional distillation loss functions – forward KLD and reverse KLD tackles two different properties – 
while FKLD makes student distribution overly smoothened (higher recall), RKLD captures prominent 
modes of the teacher (higher precision). 

• Wang et al., proposed a weighted scheme between FKLD and RKLD, capturing the confidence and 
hardness of teacher-student output probabilities. ABKD is a generalized variation of the popularly 
used divergence-based loss functions used in KD.
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https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty

Advances in Large Language ModelsAdvances in Large Language Models

Tanmoy Chakraborty
Advances in Large Language Models

Advances in Large Language Models

Limitations of Vanilla KD

Image reference: Xu et al., 2024

Knowledge sharing is unidirectional, i.e., teacher is not aware of student’s 

capacity 
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KD with Meta Learning – Zhou et al., 2022
• Traditional KD approaches are uni-directional, i.e., teacher is mostly trained prior to the KD process; 

therefore, teacher is unaware of the student’s capacity.
• The teacher pre-training procedure is not optimized for distillation purposes; good model may not be 

always a good teacher
• To address these challenges, Zhou et al., proposed a meta-KD method where the teacher model is 

also trained in a meta loop, enabling better knowledge dissipation in the subsequent KD step.

https://www.lcs2.in/
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MPDistil: Student-Aware Meta Distillation: Learning to teach

Sengupta, Dixit, Akhtar, Chakraborty. A Good Learner Can Teach Better: Teacher-Student Collaborative Knowledge Distillation. ICLR 2024.

● A healthy competition between the teacher 

and student can encourage both the models 

to perform better.

● A better teacher can set a higher 

benchmark for the student, enhancing 

student’s performance.

● The student can devise better learning 

strategy (curriculum) to perform better than 

the teacher. 

https://www.lcs2.in/
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MPDistil: Step 1 -- Teacher Fine-tuning
1. Teacher Fine-tuning
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MPDistil: Step 2 -- Student Distillation
1. Teacher Fine-tuning 2. Student Distillation
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MPDistil: Step 3 -- Meta-teacher Learning
1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 

(on a quiz dataset)

Intuition: The meta-teacher obtains the hidden states from both teacher and student and creates a healthy 

competition between the models. 

Collaborative Loss Competitive Loss
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MPDistil: Step 4 -- Student Curriculum Learning
1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 

(on a quiz dataset)

4. Student Curriculum 

Learning

Why Curriculum Learning in KD?

In real world, a student might aim to improve her 

understanding of Physics by studying selected concepts 

from Mathematics.
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MPDistil: Step 4 -- Student Curriculum Learning
1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 

(on a quiz dataset)

A policy network selects 

optimal curriculum to 

fine-tune the student by 

maximizing the reward

Competing student tries to beat the teacher

4. Student Curriculum 

Learning
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A “smart” student can beat a teach!!
ICLR’24

Positive value 
indicates the 
student model is 
better than the 
teacher model
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Explaining Knowledge Distillation 

Questions

(i) Post-KD, does student perfectly imitate a teacher?

(ii) What are the key drivers influencing the effectiveness of KD methods?

Known: KD improves generalization abilities of student models.

Sengupta et al. ACL (Findings) 2025
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Agreement b/w Teacher-Student Post-KD

Teacher-student agreement improves post KD, mostly for smaller LMs (<7B).

Agreement: Overlap between the final output generated by teacher and students.
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Fidelity b/w Teacher-Student Post-KD

•Fidelity: Ability of the student to imitate the teacher’s reasoning behaviors. 

• Smaller LMs tend to have better fidelity post-KD.

• However, statistical tests show that fidelity does not necessarily improve the generalization 

abilities of student models!!
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Fidelity vs Generalization Paradox of KD

•High teacher-student 

fidelity, but wrong answer 

predicted by student (poor 

generalization)
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Fidelity vs Generalization Paradox of KD

•Low teacher-student 

fidelity, but good 

generalization

Therefore, the tradeoff between generalization vs fidelity-agreement remains prominent. 
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Drivers behind Successful KD

1. Teacher model should be task-aware
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Drivers behind Successful KD

1. Teacher model should be task-aware 2. Teacher signals to student should be 
noise-free.

Here 𝜎 is the amount of Gaussian noise added to the 
teacher logits before distilling to student. For 𝜎, student 
performance drops drastically.

Teacher model performance minimally affects student outcomes; however, the 

teacher’s task-specific expertise is crucial
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Drivers behind Successful KD

1. Teacher model should be task-aware 2. Teacher signals to student should be 
noise-free.
Here 𝜎 is the amount of Gaussian noise added to the 
teacher logits before distilling to student. For 𝜎, student 
performance drops drastically.

3. Logit smoothing is important
Here 𝜏 is the temperature used to 
smoothen the teacher logits. Too much 
smoothing hurts student performance, but 
moderate smoothing shows benefit.

Temperature (𝜏) in KD balances precision (𝜏 ↓) and recall (𝜏 ↑) of the student model.
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