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Inference through
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Inference through

Fwd. pass (#2) to get
distribution at step 4
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Inference through

# Fwd Passes: 4
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Inference through
an LLM

O 4 forward passes for 4 tokens
O Not feasible at production scale

O Let us revisit forward pass through and see if we can optimize

0 We will focus on attention layer as that is the bottleneck # Fwd Passes: 4

#Tokens: 4
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Why we need efficient inference?

Training Inference
* Single forward pass and all output * One forward pass for each token =
probabilities computed in parallel « Very expensive

* Need techniques to make it workable

Are there any redundant computations in each iteration?

%) LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani
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Two stages of LLM inference

* 1stforward pass (Pre-fill step) Highl el
Prefill Phiase ) e s |7 SlalEL Al
** The entire prompt is embedded and encoded -

— ¢ Multi-head attention computes the keys and

* values (KV)

. ¢ Large matrix multiplication, high usage of the
Iteration | hardware accelerator
* ~

e Computer ]
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Content credits: Li et al, 2024 LLM Inference Serving: Survey of Recent Advances

@%‘; LLMs: Introduction and Recent Advances \ j [LCS@ Yatin Nandwani




Remaining forward passes (output generation): sequential

* The answer is generated one token at a time — Low latency per step

* Each generated token is appended to the previous input

* The process is repeated until the stopping criteria is met (max. length or EOS)
* Low usage of the hardware accelerator

Prefill Phase Decoding Phase

f S .

N
(Iteration |

Iteration 2) ->(Iteration 3] -D(Iteration 4
y
. uComputer @

science Is
LLMs: Introduction and Recent Advances [LCS@ Yatin Nandwani

Content credits: Li et al, 2024 LLM Inference Serving: Survey of Recent Advances and Opportunities




Inference through an LLM

 1stforward pass (Pre-fill step) Highly parallel
* The entire prompt is embedded and encoded — High latency
* Multi-head attention computes the keys and values (KV)
* Large matrix multiplication, high usage of the hardware accelerator

* Remaining forward passes (Output generation): sequential
* The answer is generated one token at a time — Low latency per step
* Each generated token is appended to the previous input
* The process is repeated until the stopping criteria is met (max. length or EOS)
* Low usage of the hardware accelerator

Content credits: https://www.slideshare.net/slideshg
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Memory Usage of KV cache
2

2 * precision * Njgyers* dmoger 1| S€qleny: batch
— —

2 : Two matrices for Kand V

precision : bytes per parameter ( e.g. 4 for fp32)
Nigyers : layers in the model

dmodel : dimension of embeddings

seqlen : length of context in tokens

batch : batch size

Content credits: https://www.youtube.com/watch?v=80blUggRJf4&t=1s&ab_channel=EfficientNLP
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Memory Usage of KV cache: Example OPT-13B

2 * precision * Njgyers* dmoger * Seqlen * batch

2 : Two matrices for Kand V 2 (KV)
precision . bytes per parameter ( e.g. 4 for fp32) | 2 bytes (fp16)
Nigyers : layers in the model 40 layers
Amodel ; dimension of embeddings 5120 dim.
seqlen . length of context in tokens 2048 tokens
batch : batch size 10

Content credits: https://www.youtube.com/watch?v=80blUggRJf4&t=1s&ab_channel=EfficientNLP
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Memory Usage of KV cache: Example OPT-13B

2 * precision * Njgyers* dmoger * Seqlen * batch

KV Cache: g 7 GB 2 2 (KV)
2 bytes (fp16)
Model Size: 213 =26 GB. 40 ayers
On a40GB A100 5120 dim.
* 65% (26GB) used by model parameters ! 2048 tokens
e ~30% £1_2_(_313_) available for KV cache @

* Expected throughput ~ 8 batch size of 2048 tokens

)

?@@ LLMs: Introduction and Recent Advances ECS@ Yatin Nandwani




Memory Management of KV Cache

PromptA: “The cat sat” PromptB: “You only”
Max Tokens: 2048 Max Tokens: 572
e
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Memory Management of KV Cache

Tensor operations require
contiguou

The | cat | sat ( You |only
N ~
ensor operations require contiguous memory
2048 Slots reserved 512 Slots reserved
e —— ] i
PromptA: “The cat sat” PromptB: “You only”
Max Tokens: 2048 Max Tokens: 572

LLMs: Introduction and Recent Advances 6 Yatin Nandwani




Memory Management of KV Cache

External  (que to memory allocators like buddy allocator)
fragmentation

)

@@ LLMs: Introduction and Recent Advances

orty I
J

Y
512 Slots reserved

—N—
The | cat | sat [ -
N i ] .
2048 Slots reserved
PromptA: “The cat sat” }
Max Tokens: 2048

[ PromptB: “You only”

Max Tokens: 572 }
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Memory Management of KV Cache

Current
External Iteration
fragmentation
—_—

The |cat | sat [on NN | [N You |onty | tive [

|

Current
Iteration
PromptA: “The cat sat” PromptB: “You only”
Max Tokens: 2048 Max Tokens: 572

5@% LLMs: Introduction and Recent Advances [LCS% Yatin Nandwani




Memory Management of KV Cache

Current
External Iteration
fragmentation
—_—A

The [cat sat [on AN | [N You |onty | tive [ I
(S J ] W—J

Y

KV Cache for Current KV Cache for
prompt A lteration prompt B
(3 slots) (2 slots)
PromptA: “The cat sat” PromptB: “You only”
Max Tokens: 2048 Max Tokens: 572

?@%; LLMs: Introduction and Recent Advances LL-9@&  Yatin Nandwani




Memory Management of KV Cache

Current
1 Slot for
enerated External Iteration
; token fragmentation
1

The [cat sat [on AN | [N You |onty | tive [ I
(S J ] W—J

Y

KV Cache for Current KV Cache for
prompt A lteration prompt B
(3 slots) (2 slots)
PromptA: “The cat sat” PromptB: “You only”
Max Tokens: 2048 Max Tokens: 572

?@%; LLMs: Introduction and Recent Advances ECS@ Yatin Nandwani




Memory Management of KV Cache

2 Slots for Current
1 Slot for External Iteration
generated future fragmentation
token (reserved) 8 A
—A— —N—

The | cat | sat | on mat |</s> [N u |only | tive [once]</s> I
N ) I W_J ——

Y
KV Cache for Current KV Cache for 2 Slots for
future
prompt A Iteration prompt B g
(3 slots) (2 slots) (reserved)
Prompt A: “The cat sat” Prompt B: “You only”
Max Tokens: 2048 Max Tokens: 572

LLMs: Introduction and Recent Advances ECS@ Yatin Nandwani




Memory Management of KV Cache 507 Slots Never

used

Current
1 Slot for 2 Slots for
External lteration Internal

generated fut : fragmentation

token ([reserved) fragmentation g 'y

— / \ ' N\

The | cat | sat | on mat | </s> BTN u |only | live [once|</s> PRSI
N J

. J ] Y H(—J Y

KV C;cfhe for Current 2041 Slots KV Cache for 2 slots for
A teration Never used prompt B future
p(r;)?or:)cs) nternal (2 slots) (reserved)
fragmentation
{ PromptA: “The cat sat” } [ PromptB: “You only” }
Max Tokens: 2048 Max Tokens: 572

LLMs: Introduction and Recent Advances ECS@ Yatin Nandwani




Memory Management of KV Cache

Chunk Pre-allocation scheme
* KV cache stored in contiguous memory
* Chunks of memory allocated statically, based on max. tokens.
e Actual input or eventual output length ignored while allocating memory

LLMs: Introduction and Recent Advances \ [LCS@ Yatin Nandwani




Memory Management of KV Cache

Chunk Pre-allocation scheme
* KV cache stored in contiguous memory
* Chunks of memory allocated statically, based on max. tokens.
e Actual input or eventual output length ignored while allocating memory

Results in 3 types of memory wastes —
* Reserved slots for future tokens

* Internal fragmentation due to over-provisioning for
maximum sequence lengths

* External fragmentation from the mggory allocator.

LLMs: Introduction and Recent Advances \ [LCS% Yatin Nandwani




Memory Layout for 13B-OPT model on A100 (40GB)

20.4-38.2% utilized

KV

Parameters Cac?e
(26GB, 65%) | (>30%)

Others

NVIDIAA100 40GB

LLMs: Introduction and Recent Advances [LCS’% Yatin Nandwani




vLLM: Efficient KV cache management

Inspired by Virtual memory and paging

Process
B

Process

Physical Memory

2\“{ — Y] n.oww},

Memory management in OS

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale
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vLLM: Efficient KV cache management

Inspired by Virtual memory and paging

Page 0 KV Block 0
Process Page 1 Process Request KV Block 1 Request
A Page 2 B A KV Block 2 B _
Page 3 = KV Block 3
Page 4 KV Block 4
Physical Memory KV Cache
Memory management in OS Memory management in vLLM

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

%) LLMs: Introduction and Recent Advances L&.9@&  Yatin Nandwani




/| VinatMemory mecamemoy  ETTiCiENt KV cache

Tableof Y management
Pages
o Block Table Inspired by Virtual memory and paging
T / 3 U Processes as incoming requests (input to
Input prompts the model)
QO Virtual Memory to Logical KV Blocks
. Physical KV Blocks
Logical KV Blocks . .
— U Ph
J— ysical Memory to Physical KV Blocks
S
N U Page table to Block Table
Swap file on
disk
N

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
LLMs: Introduction and Recent Advances [LCS@ Yatin Nandwani




KV Blocks

KV Cache

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale
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@ck sizeD
A

{ \

KV Blocks Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

—

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

LLMs: Introduction and Recent Advances [LCS'% Yatin Nandwani




Block size 4

A
{ \

KV Blocks Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Physical KV Blocks

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

LLMs: Introduction and Recent Advances [LCS@ Yatin Nandwani




Block size 4

Physical vs Logical / A \

KV Blocks Block 0

Block 1

Block 2

Block 3

Block 0 Block 4

! Block 5

2 Block 6

3 Block 7
Logical KV Blocks Physical KV Blocks

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

LLMs: Introduction and Recent Advances [LCS@ Yatin Nandwani




Block size 4

Physical vs Logical / A \

KV Blocks Block 0

Block 1

Block 2

Block 3

Block 0 Phys. 4 Block 4

1 Block | Filled Block 5

2 Block 6

B Block 7
Logical KV Blocks Block Table Physical KV Blocks

Content credits:

https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

LLMs: Introduction and Recent Advances [LCS% Yatin Nandwani




Block size 4

Physical vs Logical / A \

KV Blocks plocko

Block 1

Prompt: “Today we are learning about LLMs and” Block 2

Block 3

Block0 | Today we are | learning Phys. # Block 4

1 - LLMs and Block | Filled Block 5

2 Block 6

3 Block 7
Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
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Block size 4

Physical vs Logical / A \

KV Blocks Block 0

1

Prompt: “Today we are learning about LLMs and” 5

3

Block 0 | Toda we are learnin
Y . Phys. # 4
1 about LLMs and \ Block | Filled 5
7 4

2 6

3 7 | Today we are | learning
Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \

KV Blocks Block 0

about LLMs and Wimresy
Prompt: “Today we are learning about LLMs and”
3
Block 0 | Toda we are learnin
Y . Phys. # 4
q Block | Filled

1 about LLMs and w’ ! - 5

2 N
3 Today we are | learning

Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and

Prompt: “Today we are learning about LLMs and”
Completion: “memory”

3
Block0 | Today we are learning Phys. 4 4
1 about LLMs and memory \ Block | Filled 5
\ 7 4
? 1 4 6
3 7 | Today we are | learning
Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and memory

Prompt: “Today we are learning about LLMs and”
Completion: “memory”

3
Block0 | Today we are learning Phys. 4 4
1 about LLMs and memory \ Block | Filled 5
\ 7 4
? 1 4 6
3 7 | Today we are | learning
Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and memory

Prompt: “Today we are learning about LLMs and”
Completion: “memory on”

3
Block0 | Today we are learning Phys. 4 4
1 about LLMs and memory \ Block | Filled 5
\ 7 4
’ 1 4 6
3 7 | Today we are | learning
Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical A
KV Blocks Block 0

1 about LLMs and memory

Prompt: “Today we are learning about LLMs and”
Completion: “memory on”

Block 0 | Today we are learning [ Allocated ondemand — ]
Phys. # -----.---------I----\
1 about LLMs and memory \ Block | Filled |
|
7 4
2 On \ '----l---------l-----’
1 4
3 (5 ) 1 Today we are | learning
Logical KV Blocks Block Table . Physical KV Blocks

-—

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u
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Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and memory

Prompt: “Today we are learning about LLMs and”
Completion: “memory on”

3
Block0 | Today we are learning [ Allocatedondemand — ]
Phys. # 4
1 about | LLMs and | memory \ Block | Filled 5 on
2 \ B
on
1 4 6
3 5 1 7 | Today we are learning
Logical KV Blocks Block Table Physical KV Blocks

%) LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and memory

Prompt: “Today we are learning about LLMs and”
Completion: “memory on demand”

3
Block 0 | Toda we are learnin
Y . Phys. # 4
Block | Filled
1 about LLMs and memory \ 5 on demand
7 4
2 on demand 6
1 4
3 5 2 7 | Today we are | learning
Logical KV Blocks Block Table Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u

%) LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and memory

3
Block 0 | Toda we are learnin
Y . Phys. # 4
Block | Filled
1 about LLMs and memory \ : ; 5 on demand
2 on demand </s> 6
1 4
3 5 2 7 | Today we are | learning
Logical KV Blocks Block Table Physical KV Blocks

Prompt A: “Today we are learning about LLMs and”
Completion: “memory on demand </s>”
Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u

LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Block size 4

Physical vs Logical / A \
KV Blocks Block 0

1 about LLMs and memory

3 | Internal fragmentation
Block0 | Today we are learning
Phys. # 4 .J:l'

1 about LLMs and memory Block | Filled

- . 5 on demand
2 on demand </s> 6

1 4
3 5 2 7 | Today we are | learning

Logical KV Blocks Block Table Physical KV Blocks

Prompt A: “Today we are learning about LLMs and”
Completion: “memory on demand </s>”
Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u

LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




0 Today we are learning Block size 4

A
1 about LLMs and f )
0
2
1 about LLMs and memory
3
Logical KV Blocks - B 3
0 Toda we are learnin
Y . Phys. # 4
Block | Filled
1 about LLMs and memory \ : ; 5 on demand
2 on demand </s> 6
1 4
3 5 2 7 | Today we are | learning
Logical KV Blocks - A Block Table -A Physical KV Blocks

Prompt A: “Today we are learning about LLMs and” Prompt B: “Joday we are learning about LLMs and”

Completion: “memory on demand</s>” Completion:
Content credits: https://youtu.be/yVXtLTcdO1Q?si=X0O2Dk-VYOShUMH1u

LLMs: Introduction and Recent Advances L \i Yatin Nandwani




0 Today we are learning Block size 4

Phys. # A
1 about | LLMs and \ Block | Filled f \
0
2
1 about LLMs and memory
3
Logical KV Blocks - B Block Table - B 3
0 Toda we are learnin
Y . Phys. # 4
Block | Filled
1 about LLMs and memory \ : ; 5 on demand
2 on demand </s> 6
1 3
3 5 2 7 | Today we are | learning
Logical KV Blocks - A Block Table -A Physical KV Blocks

Prompt A: “Today we are learning about LLMs ang” Prompt B: “Joday we are learning about LLMs and”
Completion: “memory on demand </s>” Completion:

LLMs: Introduction and Recent Advances Yatin Nandwani




0 Today we are learning Block size 4

Phys. # A
1 about | LLMs and \ Block | Filled f \
\ 3 4 0
2
6 3 | 1 about LLMs and memory
3
Logical KV Blocks - B Block Table - B -
Today we are learning
0 Toda we are learnin
Y . Phys. # 4
Block | Filled
1 about LLMs and memory \ : ; 5 on demand
2 on |demand | </s> ; 3 6 | about | LLMs | and
3 \ 5 2 7 | Today we are | learning
Logical KV Blocks - A Block Table -A Physical KV Blocks

Prompt A: “Today we are learning about LLMs ang” Prompt B: “Joday we are learning about LLMs and”
Completion: “memory on demand </s>” Completion:

LLMs: Introduction and Recent Advances Yatin Nandwani




0 Today we are learning Block size 4
Phys. # A

1 about | LLMs and | memory \ Block | Filled f \
- \ 3 4 0
2 anagem </s>
ent ) \ 6 4 | 1 about LLMs and memory
3 2 1 anagem >
- ent /
Logical KV Blocks - B Block Table - B -
oday we are learning
0 Toda we are learnin
Y . Phys. # 4
Block | Filled
1 about LLMs and memory \ 5 on demand
7 4
2 on demand | </s> ] 3 6 | about | LLMs and éemory >
3 5 2 7 | Today we are | learning
Logical KV Blocks - A Block Table -A Physical KV Blocks

Prompt A: “Today we are learning about LLMs ang” Prompt B: “Joday we are learning about LLMs and”
Completion: “memory on demand </s>” Completion: “memory management </s>”

LLMs: Introduction and Recent Advances Yatin Nandwani




Dynamic block mapping enables sharing

Today we are learning
about LLMs and

(

LLM

Single Prompt

LLMs: Introduction and Recent Advances

Imemory on demand

'L how they work

Multiple completions

LLCSi] Yatin Nandwani



Sharing KV blocks in parallel sampling
/ Phys. Block | # Filled Phys.Block— illed
B 4 0 5 a )
[ 7 3 1 __7 3
—— L a— \
2
Today we are learning 3 Today we are learning
about LLMs and 4 about LLMs and
5 Today | we are learni
ng
6

Physical KV Blocks FL»
o) ™

%) LLMs: Introduction and Recent Advances ELCS'% Yatin Nandwani




Sharing KV blocks in parallel sampling
Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
7 3 1 7 3
2
Today we are learning 3 Today we are learning
about LLMs and 4 about LLMs and
Today | we are learni
ng
Ref count:2_,
Logical KV Blocks - A @ about | LLMs | and X Logical KV Blocks - B
Physical KV Blocks

%) LLMs: Introduction and Recent Advances CS&  Yatin Nandwani




Sharing KV blocks in parallel sampli

S
oo,

Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
7 3 1 7 ( 3)
2
Today we are learning 3 Today we are learning
about LLMs and memory)> 4 about LLMs and how’i
———— ——
’ | Today | we are | learni
ng

Physical KV Blocks

) LLMs: Introduction and Recent Advances CS&'  Yatin Nandwani




Sharing KV blocks in parallel sampling
Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
7 3 1 7 3
2
Today we are learning 3 Today we are learning
about LLMs and | memory 4 about LLMs and how
5 Today | we are learni
ng
[y
Ref cou
Logical KV Blocks - A about | LLMs an(D Logical KV Blocks - B

Physical KV Blocks

) LLMs: Introduction and Recent Advances CS&'  Yatin Nandwani




Copy-on-write

Sharing KV blocks in parallel sampling

Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
N —— —
Q % copy —on-write 7 3
about | LLMs | and
Today we are learning 3/ . Today we are learning
about | LLMs and | memory 4 about | LLMs and how
5 Today | we are learni
ng
A
Ref count:
Logical KV Blocks - A about ‘ LLMs @ Logical KV Blocks - B
Physical KV Blocks

) LLMs: Introduction and Recent Advances CS&'  Yatin Nandwani




Sharing KV blocks in parallel sampli

S
oo,

Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
7 3 copy —on-write 7 3
5 | about | LLMs | and <ﬂem<?)

S

Today we are learning 3 .. Today we are learning
about | LLMs and | memory 4 about | LLMs and how

S | Today | we are | learni

n
6 g
Ref count: 1 -
Logical KV Blocks - A " | about | LLMs | and Logical KV Blocks - B
Physical KV Blocks

) LLMs: Introduction and Recent Advances CS&'  Yatin Nandwani




Sharing KV blocks in parallel sampling

Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
72 4 copy —on-write 7 3
/ &)
about | LLMs | and | memo
ry
Today we are learning 3 R Today we are learning
about | LLMs and | memory 4 / about | LLMs and CEOW )
S | Today | we are | learni
n
6 g
Ref count: 1 -
Logical KV Blocks - A “Fabout | LLMs | and | fpo f Logical KV Blocks - B
Physical KV Blocks

) LLMs: Introduction and Recent Advances oW Yatin Nandwani




Sharing KV blocks in parallel sampli

S
oo,

Phys. Block | # Filled Phys. Block | # Filled
5 4 0 5 4
2 4 copy —on-write 7 3
2 about | LLMs | and | memo
ry
Today we are learning 3 R Today we are learning
about LLMs and | memory 4 about LLMs and how
S | Today | we are | learni
n
6 g
Ref count: 1 -
Logical KV Blocks - A " | about | LLMs | and | how Logical KV Blocks - B
Physical KV Blocks

%) LLMs: Introduction and Recent Advances ELCSI% Yatin Nandwani




Sharing KV blocks in parallel sampling
Phys. Block | # Filled Phys. Block | # Filled
5 4 olon demand 5 4
2 4 1 7 4
0 2 5 | about | LLMs | and | memo 4 2
Today we are learning 3 = Today we are learning
about LLMs and / memory 4| they work about LLMs and how
on | demand ’ S| Today | we | are | learni they |  work
6 i
Logical KV Blocks - A " apout | LLMs | and | how Logical KV Blocks - B
Physical KV Blocks

%) LLMs: Introduction and Recent Advances ELCSI% Yatin Nandwani




Sharing KV blocks in parallel sampling
Phys. Block | # Filled Phys. Block | # Filled
5 4 olon demand 5 4
2 4 1 7 4
0 2 5 | about | LLMs | and | memo 4 2
ry
Today we are learning 3 Today we are learning
about LLMs and | memory 4| they work about LLMs and how
on | demand S| Today | we | are | learni they |  work
ng
Ref count: 2
7 i -
Logical KV Blocks - A about | LLMs | and | how Logical KV Blocks - B
Physical KV Blocks

%) LLMs: Introduction and Recent Advances ECS"% Yatin Nandwani




Memory efficiency of vLLMs

L : 0 Tod learni
v'Minimal internal fragmentation SRER M are | learning
1 bout | LLM d
o Only happens at the last block of a sequence Dot 5 | and | memory
2 managem
o # wasted tokens / seq < block size ent . .
3 ~ ~~ -
» Sequence: O(100) or O(1000) tokens L .
> Block size: 16 or 32 tokens Internal fragmentation

v'No external fragmentation
v'On average, wasted space < 4% of KV cache

v 3-5x improved memory utilization!

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale
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S‘(‘r’.{& &‘]ﬁ\\:;J'/ g (‘V\*v "i'&"‘\ /\

(‘ b J-\.; A
Paged Attention < Nl
* Tensor operations require contiguous [ (j{ *x XX ¥y %
memory “_ ac
* How to compute attention softmax across g
fragmented memory? —t
[ D S i
* Paged Attention! c/ k \KB

- — K’([ g

- "‘g

{\( K‘Il/ Oa. ,( L(L\ a\&] ? v >

SO x([A1,A5]) = asoftm%x(Al)ﬁSOft (_ﬁ“' $\<‘

[A1 Aﬂ)k[-s}l = aE@mafoz‘W) + B soffpax( z)c T é.)

B-«& Loc o)
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Paged Attention

* Tensor operations require contiguous
memory

* How to compute attention softmax across
fragmented memory?

* Paged Attention!

Block 1

Block 2

Query

for
vector

Block 0

softmax([A1,A,]) = [ a softmax(A,), B softmax(A,) ]

softmax([A1,A,]) [2] = a softmax(A;) *V; + B softmax(A4,) =V,

LLMs: Introduction and Recent Advances

Key and value vectors

computer| scientist | and L
matician
renowned for
Alan Turing is a

&Csi] Yatin Nandwani




How vLLM & Paged Attention results in efficient
Inference?

Reduce memory Further reduce
fragmentation with memory usage with
paging sharing

%) LLMs: Introduction and Recent Advances [LCS@ Yatin Nandwani




Comparison with HuggingFace and TGI (2023)

* Up to 24x higher throughput than HuggingFace (HF)
* Up to 3.5x higher throughput than Text Generation Inference (TGl)

- LLaMA-78B, A10G - LLaMA-13B, A100-40GB LLaMA-78B, A10G LLaMA-13B, A100-40GB
c c -~ ! — g
£ 112.2 £ 154.2 £ 60 52.8 g 75 672
S 100 g E e '
@ o & g
= = 100 = =50
& s 50.4 a 61.8 3 2
=y S 50 S 20 15.0 = 25 19.2
3 8.3 2 6.4 3 6.2 8 45
£ 0 —— £ 0 —— £ 0 £ 0
HF TGI vLLM HF TGI vLLM g HF TGI vLLM = HF TGl vLLM
Serving throughput when each request asks for 1 output completion. Serving throughput when each request asks for 3 output completions.
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System Architecture and Implementation

End to end llm serving engine
3 components —

vLLM Engine Worker 1 :| * Afrontend
> C * Adistributed model executor (TP on single node, PP
Scheduler ache Model
Engine Shard 1 across nodes)
* Ascheduler
A —
Worker 2 =
Block Manager Centralized engine to manage block table
Cache Model . . .
Engine Shard 2 * Ateachiteration, it sends GPU memory requests to
the GPUs;
Block tables . * Cache engine in the GPU allocates the physical
— memory blocks
/ \ Worker N =
CPU Block GPU Block Cache siodal
Allocator Allocator Engine Shard N
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vLLM Engine Worker 1 &=
- vLLM
Cach Model
Scheduler E:;nz Sh:rf 1 (8K LoC in Python, 2K LoC in C++/CUDA)
y . ( '-'\‘ «2 Custom Ops
Block Manager Uz ! SO Megatron-LM
Cache Model
Engine Shard 2 O PyTO I'C h
Block tables :
oS RAY
/ \ Worker N @
CPU Block GPU Block Cache Model
Allocator Allocator Engine Shard N
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Till now...

* Motivation - Inference is sequential, memory bound and slow, with high latency
* KV caching — avoids re-computation of Keys and Value matrices

* Paged Attention and vLLM - efficient memory management

* Can we use Flash Attention to speed up decoding?
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