Efficient LLMs

Advances in Large Language Models

ELL8299 · AlL861, Semester 1, 2025-26

Yatin Nandwani Research Scientist, IBM Research

So Far...

Efficient Training

- 1. Parallelism for Scale -
 - Distribute model & data to fit massive training
 - DP, ZeRO-1/2/3, TP (w/SP), CP, PP
- 2. Efficient Implementations
 - Flash Attention
 - Liger Kernels

Efficient Inference

How is inference different from training?

Training Vs Inference in LLMs

output = mold.forward (X) 8 [4]

b) loss = nn. Gross Entropy (output, labels)

Forward Pass through an LLM

<s>)</s>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Probability distribution over all the tokens at each step (simultaneously)

Transformer based LLM (θ)

<8>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Yatin Nandwani

Probability distribution over all the tokens at each step (simultaneously)

<	s>	The	cat	sat	on	а	mat	
	0	1	2	3	4	5	6	7

Train to maximize prob. of The at step 0

<	s>	The	cat	sat	on	а	mat	
	0	1	2	3	4	5	6	7

Train to maximize prob. of cat at step 1

<	s>	The	cat	sat	on	а	mat	
	0	1	2	3	4	5	6	7

Train to maximize prob. of sat at step 2

<	s>	The	cat	sat	on	а	mat	
	0	1	2	3	4	5	6	7

Train to maximize prob. of on at step 3

Transformer based LLM (8)

<	s>	The	cat	sat	on	а	mat	
	0	1	2	3	4	5	6	7

Train to maximize prob. of a at step 4

<s></s>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Train to maximize prob. of mat at step 5

<s></s>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Train to maximize prob. of </s> at step 6

<s></s>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Forward Pass (#1)

		Tra	ansformer b	ased LLM (€))		
<8>	The	cat	sat				
0	1	2	3	4	5	6	7

Yatin Nandwani

Prob. Dist. at all steps

_									
	<s< th=""><th>s>)</th><th>The</th><th>cat</th><th>sat</th><th></th><th></th><th></th><th></th></s<>	s>)	The	cat	sat				
Ξ	J							-	
	0)	1	2	3	4	5	6	7

Pick the token having max. probability at step 3

Transformer based LLM (8)

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Pick the token having max. probability at step 3

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Fill at step 4

	<s></s>	The	cat	sat	on			
'	0	1	2	3	4	5	6	7

Fwd. Pass (#2)

Transformer based LLM (♦)

<g></g>	The	cat	sat	on			
0	1	2	3	4	5	6	7

Yatin Nandwani

Fwd. pass (#2) to get distribution at step 4

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

Fwd. pass again (#3)

Transformer based LLM (8)

<g></g>	The	cat	sat	on	а		
0	1	2	3	4	5	6	7

Fwd. pass again (#3)

<s></s>	The	cat	sat	on	а		
0	1	2	3	4	5	6	7

Fill at step 6

<g></g>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Fwd. pass again (#4)

Transformer based LLM (8)

<s></s>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Yatin Nandwani

Fwd. pass again (#4)

LCS

Stop at end of seq. token: </s>

	<g></g>	The	cat	sat	on	а	mat	
ſ	0	1	2	3	4	5	6	7

Fwd Passes: 4 #Tokens: 4

<s></s>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

☐ 4 forward passes for 4 tokens

- ☐ Not feasible at production scale
- ☐ Let us revisit forward pass through and see if we can optimize
- ☐ We will focus on attention layer as that is the bottleneck

Inference through an LLM

Fwd Passes: 4

#Tokens: 4

<g></g>	The	cat	sat	on	а	mat	
0	1	2	3	4	5	6	7

Why we need efficient inference?

Training

• Single forward pass and all output probabilities computed in parallel

Inference

- One forward pass for each token
- Very expensive
- Need techniques to make it workable

Are there any redundant computations in each iteration?

Forward Pass #1

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

LLMs: Introduction and Recent Advances

Content credits: https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Forward Pass #1

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Content credits: https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse

Forward Pass #1

<s></s>	The	cat	sat						
0	1	2	3	4	5	6	7		

Forward Pass #1

Yatin Nandwani

Forward Pass #1

<s> The cat

V: 4 *x d* dim.

sat

sat

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Content credits: https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse Yatin Nandwani

Forward Pass #1

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Q: 4 x d dim.

<s>
The
cat
sat

A: 4 x 4 dim.

V: 4 x d dim.

Forward Pass #1

<s> The cat sat

<g></g>	The	cat	sat				
0	1	2	3	4	5	6	7

Q: 4 x d dim.

A: 4 x 4 dim.

V: 4 x d dim.

Forward Pass #1

<s>
The
cat
sat

1			
0.2	0.8		
0.1	0.3	0.6	
0.01	0.19	0.3	0.5

<s>
The
cat
sat

<s> The cat sat

<g></g>	The	cat	sat				
0	1	2	3	4	5	6	7

Forward Pass #1

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Forward Pass #1

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Forward Pass #1

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Forward Pass #1

<g></g>	The	cat	sat				
0	1	2	3	4	5	6	7

- Emb. of sat at the last layer
- Pass through classifier to get distribution over tokens
- Pick the token having max. probability at step 3

Transformer based LLM (8)

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

- Emb. of sat at the last layer
- Pass through classifier to get distribution over tokens
- Pick the token having max. probability at step 3

Transformer based LLM (8)

<s></s>	The	cat	sat				
0	1	2	3	4	5	6	7

Fill at step 4

<g></g>	The	cat	sat	on			
0	1	2	3	4	5	6	7

<s>

The

cat

sat

on

V: 5 x d dim.

 A lot of computation already done in Fwd. pass #1

Forward Pass #2

 K^T : $d \times 5$ dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

Attention matrix already computed in #1

Output embed. already computed in #1

• Keys and Values already computed in #1

 K^T : $d \times 5$ dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

The

cat

sat

on

sat

sat

cat

The

<s>

<s>

The

- Attention matrix already computed in #1
- Output embed. already computed in #1
- Keys and Values already computed in #1
- Queries not required in #2

 K^T : $d \times 5$ dim.

cat

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

on

on

on

Yatin Nandwani

Q: 5 x d dim.

A: 5 x 5 dim.

V: 5 x d dim.

<s>
The
cat
sat
on

Cache the already computed matrices

K^T: *d x 5* dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

Q: 5 x d dim.

A: 5 x 5 dim.

V: 5 *x d* dim.

<s>
The
cat
sat
on

<s> The cat sat on

K^T: *d x 5* dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

Q: 5 x d dim.

<s>

The

cat

sat

on

A: 5 x 5 dim.

V: 5 *x d* dim.

 1

 0.2
 0.8

 0.1
 0.3
 0.6

 0.01
 0.19
 0.3
 0.5

K^T: *d x 5* dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

<s> The cat sat **A**: 5 x 5 dim. **Q**: 5 x d dim. K cache V cache **V**: 5 *x d* dim. <s> <s> <s> <s> 0.2 8.0 The The The The 0.1 0.3 0.6 cat cat cat cat 0.19 0.3 0.5 0.01 sat sat sat sat on on The cat sat <s> on **K**^T: *d x 5* dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

 K^T : $d \times 5$ dim.

<s></s>	The	cat	sat	on			
0	1	2	3	4	5	6	7

The

<s>

cat

sat

K cache	
<s></s>	
The	
cat	
sat	
on	

V cache	
<s></s>	
The	
cat	
sat	
on	

<g></g>	The	cat	sat	on	a		
0	1	2	3	4	5	6	7

K cache
<8>
The
cat
sat
on

V cache
<s></s>
The
cat
sat
on

<s></s>	The	cat	sat	on	а		
0	1	2	3	4	5	6	7

K cache
<s></s>
The
cat
sat
on
а

V	cache
	<s></s>
	The
	cat
	sat
	on
	а

<g></g>	The	cat	sat	on	а		
0	1	2	3	4	5	6	7

Two stages of LLM inference

1st forward pass (Pre-fill step) Highly parallel

- The entire prompt is embedded and encoded High latency
- Multi-head attention computes the keys and values (KV)
- Large matrix multiplication, high usage of the hardware accelerator

Remaining forward passes (Output generation): sequential

- The answer is generated one token at a time Low latency per step
- Each generated token is appended to the previous input
- The process is repeated until the stopping criteria is met (max. length or EOS)
- Low usage of the hardware accelerator

Content credits: Li et al, 2024 LLM Inference Serving: Survey of Recent Advances and Opportunities

- 1st forward pass (Pre-fill step) Highly parallel
 - The entire prompt is embedded and encoded High latency
 - Multi-head attention computes the keys and values (KV)
 - Large matrix multiplication, high usage of the hardware accelerator
- Remaining forward passes (Output generation): sequential
 - The answer is generated one token at a time Low latency per step
 - Each generated token is appended to the previous input
 - The process is repeated until the stopping criteria is met (max. length or EOS)
 - Low usage of the hardware accelerator

Content credits: https://www.slideshare.net/slideshare.imon-deep-dive-optimizing-llm-inference-69d3/270921961

Memory Usage of KV cache

 $2 * precision * N_{layers} * d_{model} * seqlen * batch$

2 : Two matrices for K and V

precision : bytes per parameter (e.g. 4 for fp32)

 N_{layers} : layers in the model

 d_{model} : dimension of embeddings

seqlen : length of context in tokens

batch : batch size

Memory Usage of KV cache: Example OPT-13B

 $2 * precision * N_{layers} * d_{model} * seqlen * batch$

2 : Two matrices for K and V

precision : bytes per parameter (e.g. 4 for fp32)

 N_{layers} : layers in the model

 d_{model} : dimension of embeddings

seqlen : length of context in tokens

batch : batch size

2 (KV)		
2 bytes (fp16)		
40 layers		
5120 dim.		
2048 tokens		
10		

Content credits: https://www.voutube.com/watch?v=80blUggRJf4&t=1s&ab_channel=EfficientNLF

Memory Usage of KV cache: Example OPT-13B

 $2 * precision * N_{layers} * d_{model} * seqlen * batch$

KV Cache: 17 GB

Model Size: 2*13 = 26 GB

On a 40GB A100

- 65% (26GB) used by model parameters
- ~30% (12 GB) available for KV cache
- Expected throughput ~ 8 batch size of 2048 tokens

2 (KV)
2 bytes (fp16)
40 layers
5120 dim.
2048 tokens

Content credits: https://www.youtube.com/watch?v=80blUggRJf4&t=1s&ab_channel=EfficientNLP

Prompt A: "The cat sat"

Prompt B: "You only" Max Tokens: 2048 Max Tokens: 512

Prompt A: "The cat sat"

Max Tokens: 2048

Prompt B: "You only"

Max Tokens: 512

Yatin Nandwani

Prompt A: "The cat sat"

Max Tokens: 2048

Prompt B: "You only"
Max Tokens: 512

Chunk Pre-allocation scheme

- KV cache stored in contiguous memory
- Chunks of memory allocated statically, based on max. tokens.
- Actual input or eventual output length ignored while allocating memory

Chunk Pre-allocation scheme

- KV cache stored in contiguous memory
- Chunks of memory allocated statically, based on max. tokens.
- Actual input or eventual output length ignored while allocating memory

Results in 3 types of memory wastes –

- Reserved slots for future tokens
- Internal fragmentation due to over-provisioning for maximum sequence lengths
- External fragmentation from the memory allocator.

Memory Layout for 13B-OPT model on A100 (40GB)

20.4-38.2% utilized

NVIDIA A100 40GB

vLLM: Efficient KV cache management

Inspired by Virtual memory and paging

vLLM: Efficient KV cache management

Inspired by Virtual memory and paging

Memory management in OS

Memory management in vLLM

Efficient KV cache management

Inspired by Virtual memory and paging

- ☐ Processes as **incoming requests** (input to the model)
- ☐ Virtual Memory to Logical KV Blocks
- ☐ Physical Memory to Physical KV Blocks
- ☐ Page table to **Block Table**

KV Blocks

KV Cache

KV Blocks

Block size 4

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

KV Blocks

Block size 4

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Physical KV Blocks

Logical KV Blocks

Physical KV Blocks

Logical KV Blocks

Block Table

Physical KV Blocks

Content credits:

https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

()

Prompt: "Today we are learning about LLMs and"

Block 0	Today	we	are	learning	^
1	about	LLMs	and		
2					
3					

Logical	.KV	Blo	cks
---------	-----	-----	-----

Block Table

Physical KV Blocks

Prompt: "Today we are learning about LLMs and"

Block 0	Today	we	are	learning
1	about	LLMs	and	
2				
3				

Logical KV Blocks

Block Table

Physical KV Blocks

Prompt: "Today we are learning about LLMs and"

Completion: "memory"

Block 0	Today	we	are	learning
1	about	LLMs	and	memory
2				
3				

LMs and memory Block Filled
7 4
1 4

Logical KV Blocks

Block Table

Phys.

#

Block size 4

Physical KV Blocks

Prompt: "Today we are learning about LLMs and"

Completion: "memory"

Block 0	Today	we	are	learning
1	about	LLMs	and	memory
2				
3				

LLMs	and	memory	$ \cdot $	Block	Filled
			\\	7	4
			\	1	4
			-		
					l .

Logical KV Blocks

Block Table

Phys.

#

Block 0

1 about LLMs and memory

3 4

5 6
7 Today we are learning

Block size 4

Physical KV Blocks

Prompt: "Today we are learning about LLMs and"

Completion: "memory on"

Block 0 Today we are learning

1 about LLMs and memory

2 on 3

Phys. #
Block Filled

7 4
1 4

2 3 4 5 6 7 Today we are

about

Block size 4

and

memory

learning

LLMs

Logical KV Blocks

Block Table

Physical KV Blocks

Content credits: https://youtu.be/yVXtLTcdO1Q?si=XO2Dk-VYOShUMH1u

Block 0

Prompt: "Today we are learning about LLMs and"

Completion: "memory on"

Block 0	Today	we	are	learning
1	about	LLMs	and	memory
2	on			
3				

Logical KV Blocks Block Table

Block size 4

Prompt: "Today we are learning about LLMs and"

Completion: "memory on"

Block 0	Today	we	are	learning
1	about	LLMs	and	memory
2	on			,
3				

Logical KV Blocks

	Phys. Block	# Filled	
\	7	4	X
1	1	4	
1	5	1	/
,		1	ı

4

Block 0

LLMs about and memory Allocated on demand on Today learning we are

Block size 4

Block Table

Physical KV Blocks

Prompt: "Today we are learning about LLMs and"

Completion: "memory on demand"

Block 0	Today	we	are	learning
1	about	LLMs	and	memory
2	on	demand		
3				

Logical KV Blocks

	Phys. Block	# Filled	
¥	7	4	X
1	1	4	
•	5	2	

4

LLMs about and memory demand on Today learning we are

Block size 4

Block Table Physical KV Blocks

Block 0

Prompt A: "Today we are learning about LLMs and"

Completion: "memory on demand </s>"

Prompt A: "Today we are learning about LLMs and"

Completion: "memory on demand </s>"

Content credits: https://youtu.be/yVXtLTcdO1Q?si=XO2Dk-VYOShUMH1u

Completion: "memory on demand</s>"

LLMs: Introduction and Recent Advances

Prompt A: "Today we are learning about LLMs and"

Completion: "memory on demand </s>"

Prompt B: "Today we are learning about LLMs and" Completion:

Prompt A: "Today we are learning about LLMs and" Completion: "memory on demand </s>"

Prompt B: "Today we are learning about LLMs and" Completion:

Prompt A: "Today we are learning about LLMs and" Completion: "memory on demand </s>"

Prompt B: "Today we are learning about LLMs and"
Completion: "memory management </s>"

A LI Man lateration and Barrett Advances

Dynamic block mapping enables sharing

0		
1		
2		
3		

Phys. Block		# Filled
	5	4
	_7	3

Today	we	are	learning
about	LLMs	and	

Logical KV Blocks - A

	2					
\	3					
\backslash	4					
/	5	Today	we	are	learni ng	
\	6					
(∀	about	LLMs	and		

Physical KV Blocks

Today	we	are	learning
about	LLMs	and	

Logical KV Blocks - B

0

Phys. Block	# Filled
5	4
7	3

are

and

learning

Today	we	are	learning
about	LLMs	and	

Logical KV Blocks - A

(/5)	Touay	WE	ale	tearrii
ک				ng
Ref	count: 2	>		
()	about	LLMs	and	X

we

LLMs

Logical KV Blocks - B

Today

about

Physical KV Blocks

Copy-on-write

Sharing KV blocks in parallel sampling

Phys. Block	# Filled
5	4
7	3

Today	we	are	learning
about	LLMs	and	how

Logical KV Blocks - B

Phys. Block	# Filled
5	4
7	3

,	Today	we	are	learning
•	about	LLMs	and	how

Logical KV Blocks - B

Physical KV Blocks

Phys. Block	# Filled	
5	4	
7	3	

Today	we	are	learning
about	LLMs	and	how

Logical KV Blocks - B

Physical KV Blocks

Phys. Block	# Filled
5	4
7	4
4	2

Today	we	are	learning
about	LLMs	and	how
they	work		

Physical KV Blocks

Memory efficiency of vLLMs

- √ Minimal internal fragmentation
 - o Only happens at the last block of a sequence
 - o # wasted tokens / seq < block size</p>

➤ Sequence: O(100) or O(1000) tokens

> Block size: 16 or 32 tokens

- √ No external fragmentation
- ✓ On average, wasted space < 4% of KV cache</p>
- √3-5x improved memory utilization!

Today	we	are	learning
about	LLMs	and	memory
managem ent			,
Internal fragmentation			

Content credits: https://www.youtube.com/watch?v=5ZlavKF_98U&t=1646s&ab_channel=Anyscale

0

1

2

3

• How to compute attention *softmax* across fragmented memory?

• Paged Attention!

Paged Attention

- Tensor operations require contiguous memory
- How to compute attention *softmax* across fragmented memory?
- Paged Attention!

$$softmax([A_1, A_2]) = [\alpha softmax(A_1), \beta softmax(A_2)]$$
$$softmax([A_1, A_2]) \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \alpha softmax(A_1) * V_1 + \beta softmax(A_2) * V_2$$

How vLLM & Paged Attention results in efficient inference?

Reduce memory fragmentation with paging Further reduce memory usage with sharing

Comparison with HuggingFace and TGI (2023)

- Up to 24x higher throughput than HuggingFace (HF)
- Up to 3.5x higher throughput than Text Generation Inference (TGI)

System Architecture and Implementation

End to end llm serving engine

3 components -

- A frontend
- A distributed model executor (TP on single node, PP across nodes)
- A scheduler

Centralized engine to manage block table

- At each iteration, it sends GPU memory requests to the GPUs;
- Cache engine in the GPU allocates the physical memory blocks

Till now...

- Motivation Inference is sequential, memory bound and slow, with high latency
- KV caching avoids re-computation of Keys and Value matrices
- Paged Attention and vLLM efficient memory management
- Can we use Flash Attention to speed up decoding?

