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• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ;  ii. Param gradients  iii. Optim states   iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation ( run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation? → Data Parallelism
• Can we shard the optim. states, grads, and model params across GPUs? → FSDP
• Still not good for big models & large sequences. 
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Recap



Recap
• Can we split activations of one input across GPUs?
• Split along the hidden dimension -- let’s exploit the distributive property of matrix 

multiplication! → Tensor Parallelism
• TP: both model weights & activations are split across GPUs!
• TP: LayerNorm & Dropout – same computation on same data - wastage of 

resources :-( 
• Combine TP with Sequence Parallel – reduce & scatter along seq. length 

dimension
• How to handle very very long sequences?
• Context Parallel → split sequence into chunks & process each chunk on a 

different GPU (same weights but different activations on each GPU)
• How to apply attention on a sequence split on multiple GPUs? → Ring Attention 
• TP: Communication overhead beyond a node is prohibitive. 
• How to handle very large models? 3
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP:  Split a model across one node to tame 
large models

• CP: Tame the activation explosion with long 
sequences.

• TP: doesn’t scale well across nodes

https://www.lcs2.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

2. If the model is too big to fit with TP=8 
we will see a massive slowdown due 
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP:  Split a model across one node to tame 
large models

• CP: Tame the activation explosion with long 
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across 

GPUs?

Pipeline Parallelism

https://www.lcs2.in/
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Pipeline Parallelism
• Split model's layers across multiple GPUs. 
• E.g., layers 1-4 on GPU 1, layers 5-8 on 

GPU 2, and so on.
• Each GPU stores and process a portion of 

the model's layers, significantly reducing 
the memory requirements per GPU

• Required interconnect bandwidth stays 
quite low: send moderate-sized activations 
at a handful of locations along the model 
depth

• What is the main issue with this design?

https://www.lcs2.in/
https://home.iitd.ac.in/
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The numbers correspond to the layer IDs

Ideal Time    𝑡𝑖𝑑 = 𝑡𝑓 + 𝑡𝑏

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏)  [𝑝:  #GPUs] 

Ratio     𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1

AFAB: All forward, All backward

• Bubble: GPU idle time (gray color)

• Is there a way to reduce the bubble?

https://www.lcs2.in/
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The numbers correspond to the Micro Batch

Ideal Time    𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏)  [𝑝:  #GPUs] 

Ratio     𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚

AFAB: All forward, All backward

• Can we indefinitely increase 𝑚?
• No! Activation memory will explode - need to keep them till bwd pass.
• Is there any alternative to avoid activation storage (and hence increase 𝑚)? 

https://www.lcs2.in/
https://home.iitd.ac.in/
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The numbers correspond to the Micro Batch

Ideal Time    𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏)  [𝑝:  #GPUs] 
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1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule 

𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1

https://www.lcs2.in/
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1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule 

𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1 1/32 3/32 7/32 15/32 31/32
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1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule 

1/32 3/32 7/32 15/32 31/32

• Only 15% drop in a cross-node scenario
• Much better than 43% in TP

𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1
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1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule 

1/32 3/32 7/32 15/32 31/32𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1

• 1F1B helps in reducing memory and thus increasing 𝑚
• No effect on the size of the bubble -- numerator is still  𝑝 − 1
• Can we borrow ideas from Zig-Zag allocation in Ring Attention?

https://www.lcs2.in/
https://home.iitd.ac.in/
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The numbers correspond to the Micro Batch
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Interleaving Stages
The numbers correspond to the Micro Batch
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https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Interleaving Stages
The numbers correspond to the Micro Batch

• Looping Pipeline:  micro-batch moves in circles
• Additional communication: same GPU visited multiple times.

https://www.lcs2.in/
https://home.iitd.ac.in/
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Interleaving Stages
The numbers correspond to the Micro Batch

# Stages or model chunks per GPU 𝑣

Ideal Time    𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏)/𝑣  [𝑝:  #GPUs] 

Ratio     𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /(𝑣 ∗ 𝑚)

https://www.lcs2.in/
https://home.iitd.ac.in/
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4D Parallelism

1. Data Parallel & ZeRO-1/2/3
2. Tensor Parallel (w/ Sequence Parallel)
3. Context Parallel
4. Pipeline Parallel

https://www.lcs2.in/
https://home.iitd.ac.in/
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4D Parallelism in action

Scaling Llama 3 Training with Efficient Parallelism Strategies, Chu et al. 2025

https://www.lcs2.in/
https://home.iitd.ac.in/
https://aisystemcodesign.github.io/papers/Llama3-ISCA25.pdf
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Let’s revisit the motivation …

https://www.lcs2.in/
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Training Resources vs Performance

• Based on Nvidia A100 
80GB GPU

22

https://huggingface.co/spaces/optimum/llm-perf-leaderboard

https://www.lcs2.in/
https://home.iitd.ac.in/
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
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Efficient LLMs

23

• How to scale training?
• Data Parallelism
• Tensor Parallelism
• Context Parallelism
• Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/
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Inference Throughput vs Performance

https://www.lcs2.in/
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• On Nvidia A100 80GB 
GPU;

• 16-bit quantized
• Batch Size  - 1 
• Prompt size of 256
• Generating 1000 

tokens

25

Inference Throughput vs Performance

Mixtral-8x7B

https://www.lcs2.in/
https://home.iitd.ac.in/
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Inference Throughput vs Performance

Mixtral-8x7B

• Similar performance, 
different throughput! How?

• Efficient implementation –
• Fused kernel for 

attention

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Efficient LLMs

27

• How to scale training?
Parallelism …

• Efficient implementation
• Flash Attention
• Paged Attention

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Efficient Implementation of Attention

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

GPU Basics
What is a kernel?

• A piece of code running on a core of the GPU
• Implements basic operations – vector 

addition, elementwise multiplication, matrix 
multiplication etc.

• Written in CUDA or Triton, compiled to low 
level assembly

All tensor manipulations are converted to a 
series of kernel calls.

torch.where(x < 0, alpha * (torch.exp(x) - 1), x)

1. lt_kernel → produces mask from x < 0
2. exp_kernel → computes exp(x)
3. sub_kernel → computes exp(x) - 1
4. mul_kernel → computes alpha * (...)
5. where_kernel → chooses between alpha*(exp(x)-1) and x

Can we create a custom kernel to replace a series of 
kernel calls that we use repeatedly? 

Yes! That’s called a fused kernel. 

https://www.lcs2.in/
https://home.iitd.ac.in/
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GPU Basics
What is a kernel?

• A piece of code running on a core of the GPU
• Implements basic operations – vector 

addition, elementwise multiplication, matrix 
multiplication etc.

• Written in CUDA or Triton, compiled to low 
level assembly

All tensor manipulations are converted to a 
series of kernel calls.

torch.where(x < 0, alpha * (torch.exp(x) - 1), x)

1. lt_kernel → produces mask from x < 0
2. exp_kernel → computes exp(x)
3. sub_kernel → computes exp(x) - 1
4. mul_kernel → computes alpha * (...)
5. where_kernel → chooses between alpha*(exp(x)-1) and x

Can we create a custom kernel to replace a series of 
kernel calls that we use repeatedly? 

Yes! That’s called a fused kernel. 

Decorator to dynamically compile fn into a kernel

https://www.lcs2.in/
https://home.iitd.ac.in/
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High 
Bandwidth 
Memory 

When a kernel runs:
• Tensors are first moved to SRAM from HBM
• Computation happens
• Results written back to HBM

• A lot of transfer b/w memory & workers
• Bottleneck: Lower bandwidth in HBM

GPU Basics - Memory Hierarchy

https://www.lcs2.in/
https://home.iitd.ac.in/
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Flash Attention

• A lot of transfer b/w memory & workers
• Bottleneck: Lower bandwidth in HBM
Let’s write a fused kernel for attn that avoids back & forth 
b/w HBM and SRAM

But SRAM is limited  
Can we get away with S matrix?
Does Ring Attention rings a bell?

https://www.lcs2.in/
https://home.iitd.ac.in/
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Flash Attention

https://www.lcs2.in/
https://home.iitd.ac.in/
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What else can we replace by a fused kernel?

https://www.lcs2.in/
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What else can we replace by a fused kernel?

https://www.lcs2.in/
https://home.iitd.ac.in/

	PP
	Slide 1: Large Language Models: Introduction and Recent Advances ELL881 · AIL821
	Slide 2
	Slide 3: Recap
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Pipeline Parallelism
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: 4D Parallelism
	Slide 20: 4D Parallelism in action
	Slide 21: Let’s revisit the motivation …
	Slide 22: Training Resources vs Performance
	Slide 23: Efficient LLMs
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Efficient LLMs
	Slide 28: Efficient Implementation of Attention
	Slide 29: GPU Basics
	Slide 30: GPU Basics
	Slide 31: GPU Basics - Memory Hierarchy
	Slide 32: Flash Attention
	Slide 33: Flash Attention
	Slide 34: What else can we replace by a fused kernel?
	Slide 35: What else can we replace by a fused kernel?


