
Efficient LLMs

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Yatin Nandwani
Research Scientist, IBM Research

Semester 1,
2025-2026

• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ; ii. Param gradients iii. Optim states iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation (run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation? → Data Parallelism
• Can we shard the optim. states, grads, and model params across GPUs? → FSDP
• Still not good for big models & large sequences.

2

Recap

Recap
• Can we split activations of one input across GPUs?
• Split along the hidden dimension -- let’s exploit the distributive property of matrix

multiplication! → Tensor Parallelism
• TP: both model weights & activations are split across GPUs!
• TP: LayerNorm & Dropout – same computation on same data - wastage of

resources :-(
• Combine TP with Sequence Parallel – reduce & scatter along seq. length

dimension
• How to handle very very long sequences?
• Context Parallel → split sequence into chunks & process each chunk on a

different GPU (same weights but different activations on each GPU)
• How to apply attention on a sequence split on multiple GPUs? → Ring Attention
• TP: Communication overhead beyond a node is prohibitive.
• How to handle very large models? 3

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across

GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

2. If the model is too big to fit with TP=8
we will see a massive slowdown due
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across

GPUs?

Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Pipeline Parallelism
• Split model's layers across multiple GPUs.
• E.g., layers 1-4 on GPU 1, layers 5-8 on

GPU 2, and so on.
• Each GPU stores and process a portion of

the model's layers, significantly reducing
the memory requirements per GPU

• Required interconnect bandwidth stays
quite low: send moderate-sized activations
at a handful of locations along the model
depth

• What is the main issue with this design?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

The numbers correspond to the layer IDs

Ideal Time 𝑡𝑖𝑑 = 𝑡𝑓 + 𝑡𝑏

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏) [𝑝: #GPUs]

Ratio 𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1

AFAB: All forward, All backward

• Bubble: GPU idle time (gray color)

• Is there a way to reduce the bubble?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

The numbers correspond to the Micro Batch

Ideal Time 𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏) [𝑝: #GPUs]

Ratio 𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚

AFAB: All forward, All backward

• Can we indefinitely increase 𝑚?
• No! Activation memory will explode - need to keep them till bwd pass.
• Is there any alternative to avoid activation storage (and hence increase 𝑚)?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

The numbers correspond to the Micro Batch

Ideal Time 𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏) [𝑝: #GPUs]

Ratio 𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚

1F1B: One forward, One backward

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule

𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule

𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1 1/32 3/32 7/32 15/32 31/32

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule

1/32 3/32 7/32 15/32 31/32

• Only 15% drop in a cross-node scenario
• Much better than 43% in TP

𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1F1B: One forward, One backward
Throughput scaling with Pipeline Parallelism: 1F1B schedule

1/32 3/32 7/32 15/32 31/32𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚 = 1

• 1F1B helps in reducing memory and thus increasing 𝑚
• No effect on the size of the bubble -- numerator is still 𝑝 − 1
• Can we borrow ideas from Zig-Zag allocation in Ring Attention?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

The numbers correspond to the Micro Batch

Ideal Time 𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏) [𝑝: #GPUs]

Ratio 𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /𝑚

1F1B: One forward, One backward

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Interleaving Stages
The numbers correspond to the Micro Batch

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Interleaving Stages
The numbers correspond to the Micro Batch

• Looping Pipeline: micro-batch moves in circles
• Additional communication: same GPU visited multiple times.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Interleaving Stages
The numbers correspond to the Micro Batch

Stages or model chunks per GPU 𝑣

Ideal Time 𝑡𝑖𝑑 = 𝑚 ∗ (𝑡𝑓 + 𝑡𝑏)

Additional Time (PP bubble) 𝑡𝑝𝑏 = 𝑝 − 1 ∗ (𝑡𝑓 + 𝑡𝑏)/𝑣 [𝑝: #GPUs]

Ratio 𝑟𝑏𝑢𝑏𝑏𝑙𝑒 = 𝑝 − 1 /(𝑣 ∗ 𝑚)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

4D Parallelism

1. Data Parallel & ZeRO-1/2/3
2. Tensor Parallel (w/ Sequence Parallel)
3. Context Parallel
4. Pipeline Parallel

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

4D Parallelism in action

Scaling Llama 3 Training with Efficient Parallelism Strategies, Chu et al. 2025

https://www.lcs2.in/
https://home.iitd.ac.in/
https://aisystemcodesign.github.io/papers/Llama3-ISCA25.pdf

LLMs: Introduction & Recent AdvancesYatin Nandwani

Let’s revisit the motivation …

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Training Resources vs Performance

• Based on Nvidia A100
80GB GPU

22

https://huggingface.co/spaces/optimum/llm-perf-leaderboard

https://www.lcs2.in/
https://home.iitd.ac.in/
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard
https://huggingface.co/spaces/optimum/llm-perf-leaderboard

LLMs: Introduction & Recent AdvancesYatin Nandwani

Efficient LLMs

23

• How to scale training?
• Data Parallelism
• Tensor Parallelism
• Context Parallelism
• Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani 24

Inference Throughput vs Performance

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• On Nvidia A100 80GB
GPU;

• 16-bit quantized
• Batch Size - 1
• Prompt size of 256
• Generating 1000

tokens

25

Inference Throughput vs Performance

Mixtral-8x7B

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani 26

Inference Throughput vs Performance

Mixtral-8x7B

• Similar performance,
different throughput! How?

• Efficient implementation –
• Fused kernel for

attention

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Efficient LLMs

27

• How to scale training?
Parallelism …

• Efficient implementation
• Flash Attention
• Paged Attention

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Efficient Implementation of Attention

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

GPU Basics
What is a kernel?

• A piece of code running on a core of the GPU
• Implements basic operations – vector

addition, elementwise multiplication, matrix
multiplication etc.

• Written in CUDA or Triton, compiled to low
level assembly

All tensor manipulations are converted to a
series of kernel calls.

torch.where(x < 0, alpha * (torch.exp(x) - 1), x)

1. lt_kernel → produces mask from x < 0
2. exp_kernel → computes exp(x)
3. sub_kernel → computes exp(x) - 1
4. mul_kernel → computes alpha * (...)
5. where_kernel → chooses between alpha*(exp(x)-1) and x

Can we create a custom kernel to replace a series of
kernel calls that we use repeatedly?

Yes! That’s called a fused kernel.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

GPU Basics
What is a kernel?

• A piece of code running on a core of the GPU
• Implements basic operations – vector

addition, elementwise multiplication, matrix
multiplication etc.

• Written in CUDA or Triton, compiled to low
level assembly

All tensor manipulations are converted to a
series of kernel calls.

torch.where(x < 0, alpha * (torch.exp(x) - 1), x)

1. lt_kernel → produces mask from x < 0
2. exp_kernel → computes exp(x)
3. sub_kernel → computes exp(x) - 1
4. mul_kernel → computes alpha * (...)
5. where_kernel → chooses between alpha*(exp(x)-1) and x

Can we create a custom kernel to replace a series of
kernel calls that we use repeatedly?

Yes! That’s called a fused kernel.

Decorator to dynamically compile fn into a kernel

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

High
Bandwidth
Memory

When a kernel runs:
• Tensors are first moved to SRAM from HBM
• Computation happens
• Results written back to HBM

• A lot of transfer b/w memory & workers
• Bottleneck: Lower bandwidth in HBM

GPU Basics - Memory Hierarchy

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Flash Attention

• A lot of transfer b/w memory & workers
• Bottleneck: Lower bandwidth in HBM
Let’s write a fused kernel for attn that avoids back & forth
b/w HBM and SRAM

But SRAM is limited 
Can we get away with S matrix?
Does Ring Attention rings a bell?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Flash Attention

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

What else can we replace by a fused kernel?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

What else can we replace by a fused kernel?

https://www.lcs2.in/
https://home.iitd.ac.in/

	PP
	Slide 1: Large Language Models: Introduction and Recent Advances ELL881 · AIL821
	Slide 2
	Slide 3: Recap
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Pipeline Parallelism
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: 4D Parallelism
	Slide 20: 4D Parallelism in action
	Slide 21: Let’s revisit the motivation …
	Slide 22: Training Resources vs Performance
	Slide 23: Efficient LLMs
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Efficient LLMs
	Slide 28: Efficient Implementation of Attention
	Slide 29: GPU Basics
	Slide 30: GPU Basics
	Slide 31: GPU Basics - Memory Hierarchy
	Slide 32: Flash Attention
	Slide 33: Flash Attention
	Slide 34: What else can we replace by a fused kernel?
	Slide 35: What else can we replace by a fused kernel?

