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Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ;  ii. Param gradients  iii. Optim states   iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation ( run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
• Can we shard the optim. states, grads, and model params across GPUs?
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SFTTrainer 

https://huggingface.co/docs/trl/en/sft_trainer 6

torchrun is low-level 
PyTorch-native

accelerate is high-level 
and automates much of the 
distributed setup.

https://huggingface.co/docs/trl/en/sft_trainer


SFTTrainer 

https://huggingface.co/docs/trl/en/sft_trainer
https://huggingface.co/docs/trl/main/en/distributing_training
https://github.com/huggingface/trl/blob/main/trl/scripts/sft.py

7

torchrun is low-level 
PyTorch-native

accelerate is high-level 
and automates much of the 
distributed setup.

accelerate launch --config_file <path/to/acc/config> trl/scripts/sft.py \
    --model_name_or_path Qwen/Qwen2-0.5B \
    --dataset_name trl-lib/Capybara \
    --learning_rate 2.0e-5 \
    --num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \

 --eos_token '<|im_end|>’ \
 --eval_strategy steps \
    --eval_steps 100 \
    --output_dir Qwen2-0.5B-SFT \

https://huggingface.co/docs/trl/en/sft_trainer
https://huggingface.co/docs/trl/main/en/distributing_training
https://github.com/huggingface/trl/blob/main/trl/scripts/sft.py
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Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ;  ii. Param gradients  iii. Optim states   iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation ( run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
• Can we shard the optim. states, grads, and model params across GPUs?

• Still not sufficient for big models (e.g 70B Llama). Can we 
split one input sequence across GPUs?
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Let us revisit activation memory 

https://www.lcs2.in/
https://home.iitd.ac.in/
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Memory for Activations

Korthikanti etal. 2022,  Reducing Activation Recomputation in Large Transformer Models

Total 𝟑𝟒 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +
𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

MLP Block 𝟏𝟗 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

D/o mask 1 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

Attention 
Block

𝟏𝟏 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +
𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

𝑚𝑎𝑐𝑡 = 𝐿 ∗
34 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ 

+
5 ∗ 𝑛ℎ𝑒𝑎𝑑𝑠 ∗ 𝑠𝑒𝑞2 ∗ 𝑏𝑠 

• Scales Linearly with batch size
• Quadratically with the sequence length

https://www.lcs2.in/
https://home.iitd.ac.in/
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
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•  

• Can we compute them independently on different GPUs?

• How will it split the weight matrix?

𝑥ℎ

𝑥1

𝑢1

𝑢4ℎ

𝑜ℎ

𝑜1

MLP Block
neurons are independent of 

Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

https://www.lcs2.in/
https://home.iitd.ac.in/
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𝑥ℎ

𝑥1

𝑢1

𝑢4ℎ

𝑜ℎ

𝑜1

MLP Block
Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

• Focus on the 2nd Linear Layer and output neurons

• Both               and            neurons contribute to all the 
output neurons

• Can we split the computation on two GPUs? 

https://www.lcs2.in/
https://home.iitd.ac.in/
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• Use column-linear to split the 1st layer:
• compute different neurons on different 

GPUs

• Each GPU compute 4ℎ

𝑇𝑃
 activations

• Use row-linear to split the 2nd layer:
• Each GPU acts on different neurons and 

computes partial output
• No need to communicate the intermediate 

activations across GPUs → reduction in 
activation memory!

• Use all_reduce to communicate the 
partial outputs

Tensor Parallelism in MLP Block

https://www.lcs2.in/
https://home.iitd.ac.in/
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• Parallelize different heads on different 
GPUs – i.e. along 
num_attention_heads dimension

Tensor Parallelism in MHA Block
• Same as splitting K,Q,V matrices in 

column-parallel

https://www.lcs2.in/
https://home.iitd.ac.in/
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• Parallelize different heads on different 
GPUs – i.e. along 
num_attention_heads dimension

Tensor Parallelism in Attention Block
• Same as splitting K,Q,V matrices in 

column-parallel

https://www.lcs2.in/
https://home.iitd.ac.in/
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f* : all-reduce to synchronize activations

1. Synchronization not overlapping with computation
2. “Exposed communication” overhead is necessary 

to combine partial results across tensor-parallel 
ranks before the final LayerNorm can be applied.

https://www.lcs2.in/
https://home.iitd.ac.in/
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Dropout  & LayerNorm:  exactly same operations 
replicated on exactly same data

f* : all-reduce to synchronize activations

https://www.lcs2.in/
https://home.iitd.ac.in/
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f* : all-reduce to synchronize activations

Dropout  & LayerNorm:  exactly same operations 
replicated on exactly same data
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f* : all-reduce to synchronize activations

Dropout  & LayerNorm:  exactly same operations 
replicated on exactly same data

f* : all-reduce to synchronize activations

Dropout: same operation on same data!

https://www.lcs2.in/
https://home.iitd.ac.in/
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f* : all-reduce to synchronize activations

Dropout  & LayerNorm:  exactly same operations 
replicated on exactly same data

f* : all-reduce to synchronize activations

Dropout: same operation on same data!

Dropout and LayerNorm – doing same operation 
on same data on all TP GPUs!

https://www.lcs2.in/
https://home.iitd.ac.in/
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f* : all-reduce to synchronize activations

Dropout  & LayerNorm:  exactly same operations 
replicated on exactly same data

f* : all-reduce to synchronize activations

Dropout: same operation on same data!

Can we parallelize dropout and LayerNorm?

https://www.lcs2.in/
https://home.iitd.ac.in/
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• In DP, we parallelize along the “batch dim” (𝒃𝒔)
• In TP, we parallelize along the “hidden dim” (𝒉)
• In SP, we parallelize along the input sequence 

dimension (𝒔𝒆𝒒)

Sequence Parallel – parallelizing dropout & LayerNorm
Total 𝟑𝟒 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +

𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

MLP Block 𝟏𝟗 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

D/o mask 1 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

Attention 
Block

𝟏𝟏 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +
𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

https://www.lcs2.in/
https://home.iitd.ac.in/
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(all-gather)

(reduce-scatter)

(reduce-scatter)

(all-gather)

https://www.lcs2.in/
https://home.iitd.ac.in/
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Initial LayerNorm layer (SP region)
• Input tensors X1* and X2* 𝑏 𝑠 /2ℎ enter, already 

split across the sequence dimension.
• Each GPU computes LayerNorm independently on 

its sequence chunk, giving Y1* and Y2*.𝑏, 𝑠/2, ℎ

𝑏, 𝑠, ℎ

𝑏, 𝑠, ℎ/2

𝑏, 𝑠, ℎ

𝑏, 𝑠/2, ℎ

𝑏, 𝑠/2, ℎ

First transition (SP → TP)
• g operation (all-gather) combines Y1 and Y2 back to 

full sequence length.
• Restores Y 𝑏 𝑠 ℎ since column-linear layers need 

the full hidden dimension ℎ.

First linear layer (TP region)
• A1 and A2 are column-linear layers, so they 

split Y along the hidden dimension.
• GELU is applied independently on each GPU.
• Z1* and Z2* are 𝑏 𝑠 ℎ/2 .

(all-gather)

(reduce-scatter)

https://www.lcs2.in/
https://home.iitd.ac.in/
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Initial LayerNorm layer (SP region)
• Input tensors X1* and X2* 𝑏 𝑠 /2ℎ enter, already 

split across the sequence dimension.
• Each GPU computes LayerNorm independently on 

its sequence chunk, giving Y1* and Y2*.𝑏, 𝑠/2, ℎ

𝑏, 𝑠, ℎ

𝑏, 𝑠, ℎ/2

𝑏, 𝑠, ℎ

𝑏, 𝑠/2, ℎ

𝑏, 𝑠/2, ℎ

First transition (SP → TP)
• g operation (all-gather) combines Y1 and Y2 back to 

full sequence length.
• Restores Y 𝑏 𝑠 ℎ since column-linear layers need 

the full hidden dimension ℎ.

Second linear layer (TP region)
• B1 and B2 are row-linear layers, so they restore the 

hidden dimension.
• W1 and W2 are 𝑏 𝑠 ℎ that need to be summed 

together.

Final transition (TP → SP)
• g* operation (reduce-scatter) reduces for previous 

row-linear correctness while scattering along the 
sequence dimension.

• W1* and W2* are 𝑏 𝑠 /2ℎ

(all-gather)

(reduce-scatter)

https://www.lcs2.in/
https://home.iitd.ac.in/
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Computation-communication timeline for MLP Layer

1. Synchronization not overlapping with computation
2. “Exposed communication” overhead is necessary to 

combine partial results across tensor-parallel ranks 
before the LayerNorm can be applied.

https://www.lcs2.in/
https://home.iitd.ac.in/
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• Intermediate activations sharded 
across GPUs.

• TP: Reduces activation memory for 
matrix multiplication

• SP: Reduces activation memory for 
LayerNorm & dropout

• Need to gather full activations for 
LayerNorm

• Introduces significant communication 
overhead

• Introduces “exposed communication” For Sequence Length 4096

Tensor+Sequence Parallelism - Tradeoffs

https://www.lcs2.in/
https://home.iitd.ac.in/
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For Sequence Length 4096

Tensor+Sequence Parallelism - Tradeoffs

• TP leverages fast NVLink interconnects within a node.
• Slower network connections across nodes results in 

huge throughput drop.

https://www.lcs2.in/
https://home.iitd.ac.in/
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Tensor+Sequence Parallelism - Tradeoffs

For Sequence Length 4096

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

Tensor+Sequence Parallelism - Limitations
• In SP, we split one sequence into chunks 

and process each chunk in parallel. 
• Can we do the same for MLP Layer?
• How about Attention Layer?

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

2. If the model is too big to fit with TP=8 
we will see a massive slowdown due 
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

Pipeline Parallelism

• In TP, we split a “Tensor” across GPUs.
• How about splitting layers across GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

2. If the model is too big to fit with TP=8 
we will see a massive slowdown due 
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/
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• For MLP layers, its exactly same as SP for LayerNorm & Dropout

• In Attention Layer, each token has to attend on every other token.

• But tokens in a different chunk are on a different GPU!

• Full communication b/w GPUs?

• Can we somehow overlap computation with communication?

Context Parallelism – partition along sequence length

Ring Attention - online softmax computation + overlapped computation

https://www.lcs2.in/
https://home.iitd.ac.in/
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Ring Attention

Ring Attention with Blockwise Transformers for Near-Infinite Context H. Liu, M. Zaharia, P. Abbeel. 2023 [PDF] 

https://www.lcs2.in/
https://home.iitd.ac.in/
http://arxiv.org/pdf/2310.01889.pdf
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Ring Attention

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Ring Attention

https://www.lcs2.in/
https://home.iitd.ac.in/
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Computation-communication timeline

All-to-all (ring) implementation:
• GPUs exchange K/V pairs in a ring-like pattern, one chunk at a time.
• More memory-efficient, as each GPU only needs to store one additional chunk temporarily.
• Communication is spread out and overlapped with computation, though with some 

additional base latency overhead from multiple communication steps.

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Comparing with Naïve all-gather Implementation
All-gather implementation

All-to-all (ring) implementation

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP:  Split a model across one node to tame 
large models

• CP: Tame the activation explosion with long 
sequences.

• TP: doesn’t scale well across nodes

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP:  Split a model across one node to tame 
large models

• CP: Tame the activation explosion with long 
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across 

GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/
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1. If we scale the sequence length the 
activation memory will still blow up 
in the TP region

2. If the model is too big to fit with TP=8 
we will see a massive slowdown due 
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP:  Split a model across one node to tame 
large models

• CP: Tame the activation explosion with long 
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across 

GPUs?

Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/
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