
Efficient LLMs

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Yatin Nandwani
Research Scientist, IBM Research

Semester 1,
2025-2026

Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ; ii. Param gradients iii. Optim states iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation (run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
• Can we shard the optim. states, grads, and model params across GPUs?

2

3

4

5

SFTTrainer

https://huggingface.co/docs/trl/en/sft_trainer 6

torchrun is low-level
PyTorch-native

accelerate is high-level
and automates much of the
distributed setup.

https://huggingface.co/docs/trl/en/sft_trainer

SFTTrainer

https://huggingface.co/docs/trl/en/sft_trainer
https://huggingface.co/docs/trl/main/en/distributing_training
https://github.com/huggingface/trl/blob/main/trl/scripts/sft.py

7

torchrun is low-level
PyTorch-native

accelerate is high-level
and automates much of the
distributed setup.

accelerate launch --config_file <path/to/acc/config> trl/scripts/sft.py \
 --model_name_or_path Qwen/Qwen2-0.5B \
 --dataset_name trl-lib/Capybara \
 --learning_rate 2.0e-5 \
 --num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \

 --eos_token '<|im_end|>’ \
 --eval_strategy steps \
 --eval_steps 100 \
 --output_dir Qwen2-0.5B-SFT \

https://huggingface.co/docs/trl/en/sft_trainer
https://huggingface.co/docs/trl/main/en/distributing_training
https://github.com/huggingface/trl/blob/main/trl/scripts/sft.py

Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ; ii. Param gradients iii. Optim states iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation (run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
• Can we shard the optim. states, grads, and model params across GPUs?

8

Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

i. Model weights ; ii. Param gradients iii. Optim states iv. Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation (run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
• Can we shard the optim. states, grads, and model params across GPUs?

• Still not sufficient for big models (e.g 70B Llama). Can we
split one input sequence across GPUs?

9

LLMs: Introduction & Recent AdvancesYatin Nandwani

Let us revisit activation memory

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Memory for Activations

Korthikanti etal. 2022, Reducing Activation Recomputation in Large Transformer Models

Total 𝟑𝟒 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +
𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

MLP Block 𝟏𝟗 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

D/o mask 1 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

Attention
Block

𝟏𝟏 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +
𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

𝑚𝑎𝑐𝑡 = 𝐿 ∗
34 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

+
5 ∗ 𝑛ℎ𝑒𝑎𝑑𝑠 ∗ 𝑠𝑒𝑞2 ∗ 𝑏𝑠

• Scales Linearly with batch size
• Quadratically with the sequence length

https://www.lcs2.in/
https://home.iitd.ac.in/
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198

LLMs: Introduction & Recent AdvancesYatin Nandwani

•

• Can we compute them independently on different GPUs?

• How will it split the weight matrix?

𝑥ℎ

𝑥1

𝑢1

𝑢4ℎ

𝑜ℎ

𝑜1

MLP Block
neurons are independent of

Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Column Linear

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Column Linear

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

𝑥ℎ

𝑥1

𝑢1

𝑢4ℎ

𝑜ℎ

𝑜1

MLP Block
Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

• Focus on the 2nd Linear Layer and output neurons

• Both and neurons contribute to all the
output neurons

• Can we split the computation on two GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

→

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

→

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Row Linear

→

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Row Linear

→

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Row Linear

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Row Linear

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Row Linear
Row LinearColumn Linear

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• Use column-linear to split the 1st layer:
• compute different neurons on different

GPUs

• Each GPU compute 4ℎ

𝑇𝑃
 activations

• Use row-linear to split the 2nd layer:
• Each GPU acts on different neurons and

computes partial output
• No need to communicate the intermediate

activations across GPUs → reduction in
activation memory!

• Use all_reduce to communicate the
partial outputs

Tensor Parallelism in MLP Block

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• Parallelize different heads on different
GPUs – i.e. along
num_attention_heads dimension

Tensor Parallelism in MHA Block
• Same as splitting K,Q,V matrices in

column-parallel

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• Parallelize different heads on different
GPUs – i.e. along
num_attention_heads dimension

Tensor Parallelism in Attention Block
• Same as splitting K,Q,V matrices in

column-parallel

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

f* : all-reduce to synchronize activations

1. Synchronization not overlapping with computation
2. “Exposed communication” overhead is necessary

to combine partial results across tensor-parallel
ranks before the final LayerNorm can be applied.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Dropout & LayerNorm: exactly same operations
replicated on exactly same data

f* : all-reduce to synchronize activations

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

f* : all-reduce to synchronize activations

Dropout & LayerNorm: exactly same operations
replicated on exactly same data

f* : all-reduce to synchronize activations

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

f* : all-reduce to synchronize activations

Dropout & LayerNorm: exactly same operations
replicated on exactly same data

f* : all-reduce to synchronize activations

Dropout: same operation on same data!

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

f* : all-reduce to synchronize activations

Dropout & LayerNorm: exactly same operations
replicated on exactly same data

f* : all-reduce to synchronize activations

Dropout: same operation on same data!

Dropout and LayerNorm – doing same operation
on same data on all TP GPUs!

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

f* : all-reduce to synchronize activations

Dropout & LayerNorm: exactly same operations
replicated on exactly same data

f* : all-reduce to synchronize activations

Dropout: same operation on same data!

Can we parallelize dropout and LayerNorm?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• In DP, we parallelize along the “batch dim” (𝒃𝒔)
• In TP, we parallelize along the “hidden dim” (𝒉)
• In SP, we parallelize along the input sequence

dimension (𝒔𝒆𝒒)

Sequence Parallel – parallelizing dropout & LayerNorm
Total 𝟑𝟒 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +

𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

MLP Block 𝟏𝟗 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

D/o mask 1 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (4h -> h) 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

GELU 8 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Linear (h -> 4h) 2 ∗ 𝑠𝑒𝑞 ∗ 𝑏𝑠 ∗ ℎ

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

Attention
Block

𝟏𝟏 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉 +
𝟓 ∗ 𝒏𝒉𝒆𝒂𝒅𝒔 ∗ 𝒔𝒆𝒒𝟐 ∗ 𝒃𝒔

Layer Norm 𝟐 ∗ 𝒔𝒆𝒒 ∗ 𝒃𝒔 ∗ 𝒉

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

(all-gather)

(reduce-scatter)

(reduce-scatter)

(all-gather)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Initial LayerNorm layer (SP region)
• Input tensors X1* and X2* 𝑏 𝑠 /2ℎ enter, already

split across the sequence dimension.
• Each GPU computes LayerNorm independently on

its sequence chunk, giving Y1* and Y2*.𝑏, 𝑠/2, ℎ

𝑏, 𝑠, ℎ

𝑏, 𝑠, ℎ/2

𝑏, 𝑠, ℎ

𝑏, 𝑠/2, ℎ

𝑏, 𝑠/2, ℎ

First transition (SP → TP)
• g operation (all-gather) combines Y1 and Y2 back to

full sequence length.
• Restores Y 𝑏 𝑠 ℎ since column-linear layers need

the full hidden dimension ℎ.

First linear layer (TP region)
• A1 and A2 are column-linear layers, so they

split Y along the hidden dimension.
• GELU is applied independently on each GPU.
• Z1* and Z2* are 𝑏 𝑠 ℎ/2 .

(all-gather)

(reduce-scatter)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Initial LayerNorm layer (SP region)
• Input tensors X1* and X2* 𝑏 𝑠 /2ℎ enter, already

split across the sequence dimension.
• Each GPU computes LayerNorm independently on

its sequence chunk, giving Y1* and Y2*.𝑏, 𝑠/2, ℎ

𝑏, 𝑠, ℎ

𝑏, 𝑠, ℎ/2

𝑏, 𝑠, ℎ

𝑏, 𝑠/2, ℎ

𝑏, 𝑠/2, ℎ

First transition (SP → TP)
• g operation (all-gather) combines Y1 and Y2 back to

full sequence length.
• Restores Y 𝑏 𝑠 ℎ since column-linear layers need

the full hidden dimension ℎ.

Second linear layer (TP region)
• B1 and B2 are row-linear layers, so they restore the

hidden dimension.
• W1 and W2 are 𝑏 𝑠 ℎ that need to be summed

together.

Final transition (TP → SP)
• g* operation (reduce-scatter) reduces for previous

row-linear correctness while scattering along the
sequence dimension.

• W1* and W2* are 𝑏 𝑠 /2ℎ

(all-gather)

(reduce-scatter)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Computation-communication timeline for MLP Layer

1. Synchronization not overlapping with computation
2. “Exposed communication” overhead is necessary to

combine partial results across tensor-parallel ranks
before the LayerNorm can be applied.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• Intermediate activations sharded
across GPUs.

• TP: Reduces activation memory for
matrix multiplication

• SP: Reduces activation memory for
LayerNorm & dropout

• Need to gather full activations for
LayerNorm

• Introduces significant communication
overhead

• Introduces “exposed communication” For Sequence Length 4096

Tensor+Sequence Parallelism - Tradeoffs

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

For Sequence Length 4096

Tensor+Sequence Parallelism - Tradeoffs

• TP leverages fast NVLink interconnects within a node.
• Slower network connections across nodes results in

huge throughput drop.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Tensor+Sequence Parallelism - Tradeoffs

For Sequence Length 4096

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations
• In SP, we split one sequence into chunks

and process each chunk in parallel.
• Can we do the same for MLP Layer?
• How about Attention Layer?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

2. If the model is too big to fit with TP=8
we will see a massive slowdown due
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

Pipeline Parallelism

• In TP, we split a “Tensor” across GPUs.
• How about splitting layers across GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

2. If the model is too big to fit with TP=8
we will see a massive slowdown due
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• For MLP layers, its exactly same as SP for LayerNorm & Dropout

• In Attention Layer, each token has to attend on every other token.

• But tokens in a different chunk are on a different GPU!

• Full communication b/w GPUs?

• Can we somehow overlap computation with communication?

Context Parallelism – partition along sequence length

Ring Attention - online softmax computation + overlapped computation

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Ring Attention

Ring Attention with Blockwise Transformers for Near-Infinite Context H. Liu, M. Zaharia, P. Abbeel. 2023 [PDF]

https://www.lcs2.in/
https://home.iitd.ac.in/
http://arxiv.org/pdf/2310.01889.pdf

LLMs: Introduction & Recent AdvancesYatin Nandwani

Ring Attention

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Ring Attention

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Computation-communication timeline

All-to-all (ring) implementation:
• GPUs exchange K/V pairs in a ring-like pattern, one chunk at a time.
• More memory-efficient, as each GPU only needs to store one additional chunk temporarily.
• Communication is spread out and overlapped with computation, though with some

additional base latency overhead from multiple communication steps.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Comparing with Naïve all-gather Implementation
All-gather implementation

All-to-all (ring) implementation

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across

GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

1. If we scale the sequence length the
activation memory will still blow up
in the TP region

2. If the model is too big to fit with TP=8
we will see a massive slowdown due
to the inter-node connectivity.

Tensor+Sequence Parallelism - Limitations

Context Parallelism

• TP: Split a model across one node to tame
large models

• CP: Tame the activation explosion with long
sequences.

• TP: doesn’t scale well across nodes
• How about splitting layers across

GPUs?

Pipeline Parallelism

https://www.lcs2.in/
https://home.iitd.ac.in/

	TP SP
	Slide 1: Large Language Models: Introduction and Recent Advances ELL881 · AIL821
	Slide 2: Recap
	Slide 3
	Slide 4
	Slide 5
	Slide 6: SFTTrainer
	Slide 7: SFTTrainer
	Slide 8: Recap
	Slide 9: Recap
	Slide 10: Let us revisit activation memory
	Slide 11: Memory for Activations
	Slide 12: MLP Block
	Slide 13: Column Linear
	Slide 14: Column Linear
	Slide 15: MLP Block
	Slide 16
	Slide 17
	Slide 18: Row Linear
	Slide 19: Row Linear
	Slide 20: Row Linear
	Slide 21: Row Linear
	Slide 22: Row Linear
	Slide 23: Tensor Parallelism in MLP Block
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Computation-communication timeline for MLP Layer
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Computation-communication timeline
	Slide 49: Comparing with Naïve all-gather Implementation
	Slide 50
	Slide 51
	Slide 52
	Slide 53

