
Efficient LLMs

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Yatin Nandwani
Research Scientist, IBM Research

Semester 1,
2025-2026

Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

• Model params
• Param gradients
• Optim states
• Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation (run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
2

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to increase batch size? – Gradient Accumulation
• Process smaller micro-batches

sequentially
• 𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Only one micro-batch's worth of
activations needs to be kept in
memory at a time
Requires multiple consecutive
forward/backward passes per
optimization step

How to speedup?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to increase batch size? – Gradient Accumulation

How to speedup?
• Each forward / backward pass is on a

different micro-batch.
• Independent of each other
• Can we run them in parallel?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to increase batch size? – Gradient Accumulation

https://siboehm.com/articles/22/data-parallel-training

• Process smaller micro-batches
sequentially

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to increase batch size? – Data Parallelism

https://siboehm.com/articles/22/data-parallel-training

• Process smaller micro-batches
sequentially Parallelly

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to increase batch size? – Data Parallelism

https://siboehm.com/articles/22/data-parallel-training

• Process smaller micro-batches
sequentially Parallelly

• Keep a replica of params, grads,
and optim states on each GPU

• Activations and grads computed
locally and independently for
each micro batch on each GPU

• Communicate the gradients to
each other

• Independently update optim
states & params on each GPU.

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to Communicate gradients?

A,B,C: gradients computed on each
node at step t.

All-Reduce• Use “collective operations” – natively
provided by PyTorch

• Called “communication primitives” -
defined in torch.distributed API

• Each node performs some computation,
e.g. grad. computation

• We communicate the result to other
nodes for next computation step (t+1)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to Communicate gradients?
All-Reduceimport torch

import torch.distributed as dist

def init_process():
 dist.init_process_group(backend='nccl’)
 torch.cuda.set_device(dist.get_rank())

def example_all_reduce():
 tensor = torch.tensor([dist.get_rank()+1] * 5,
 dtype=torch.float32
).cuda()
 print(f“Before all_reduce on rank\
 {dist.get_rank()}: {tensor}")
 dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
 print(f“After all_reduce on rank\
 {dist.get_rank()}: {tensor}")

• Initialize a process group
• Setup communication backend
• Assign a “rank” (0,1,2...) to each node
• establishes a connection between the workers

Rank of the node

torchrun --nproc_per_node=3 dist_op.py

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to Communicate gradients?
All-Reduceimport torch

import torch.distributed as dist

def init_process():
 dist.init_process_group(backend='nccl’)
 torch.cuda.set_device(dist.get_rank())

def example_all_reduce():
 tensor = torch.tensor([dist.get_rank()+1] * 5,
 dtype=torch.float32
).cuda()
 print(f“Before all_reduce on rank\
 {dist.get_rank()}: {tensor}")
 dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
 print(f“After all_reduce on rank\
 {dist.get_rank()}: {tensor}")

https://docs.pytorch.org/docs/stable/distributed.html
https://docs.pytorch.org/tutorials/beginner/dist_overview.html

torchrun --nproc_per_node=3 dist_op.py

https://www.lcs2.in/
https://home.iitd.ac.in/
https://docs.pytorch.org/docs/stable/distributed.html
https://docs.pytorch.org/tutorials/beginner/dist_overview.html

LLMs: Introduction & Recent AdvancesYatin Nandwani

How to Communicate gradients?
All-Reduceimport torch

import torch.distributed as dist

def init_process():
 dist.init_process_group(backend='nccl’)
 torch.cuda.set_device(dist.get_rank())

def example_all_reduce():
 tensor = torch.tensor([dist.get_rank()+1] * 5,
 dtype=torch.float32
).cuda()
 print(f“Before all_reduce on rank\
 {dist.get_rank()}: {tensor}")
 dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
 print(f“After all_reduce on rank\
 {dist.get_rank()}: {tensor}")

https://docs.pytorch.org/docs/stable/distributed.html
https://docs.pytorch.org/tutorials/beginner/dist_overview.html

torchrun --nproc_per_node=3 dist_op.py

https://www.lcs2.in/
https://home.iitd.ac.in/
https://docs.pytorch.org/docs/stable/distributed.html
https://docs.pytorch.org/tutorials/beginner/dist_overview.html

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Computation and Communication timeline

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Computation and Communication timeline

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Computation and Communication timeline

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Computation and Communication timeline

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Computation and Communication timeline

• GPUs are sitting idle while grads are synced.
• Can we avoid it?
• OVERLAP GRADIENT SYNCHRONIZATION WITH

BACKWARD PASS

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Overlap grad. sync. with backward pass

• Attach an all-reduce hook
function to each parameter

def register_backward_hook(self, hook):
""" Registers a backward hook for all parameters
of the model that require gradients. """
 for p in self.module.parameters():
 if p.requires_grad is True:
 p.register_post_accumulate_grad_hook(hook)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Overlap grad. sync. with backward pass

• Attach an all-reduce hook
function to each parameter

def register_backward_hook(self, hook):
""" Registers a backward hook for all parameters
of the model that require gradients. """
 for p in self.module.parameters():
 if p.requires_grad is True:
 p.register_post_accumulate_grad_hook(hook)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Overlap grad. sync. with backward pass

• Attach an all-reduce hook
function to each parameter

def register_backward_hook(self, hook):
""" Registers a backward hook for all parameters
of the model that require gradients. """
 for p in self.module.parameters():
 if p.requires_grad is True:
 p.register_post_accumulate_grad_hook(hook)

Frequent communication
with small packets.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Bucketing Gradients

• Communication: more efficient when
performed on large tensors

• Group gradients into “buckets” and launch a
single all-reduce for all the gradients within
the same bucket

• Like packing items into boxes before shipping

• More efficient to send a few big boxes than
many small ones.

• Significantly reduce the communication
overhead and speed up the communication
operation.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

With gradient accumulation:

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

• Given a target 𝑔𝑏𝑠 :
• Assign 𝑚𝑏𝑠 according to memory of 1GPU.
• Assign 𝑑𝑝 according to available #GPUs.
• Accordingly set 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Combining Data Parallelism with Grad. Accumulation

https://siboehm.com/articles/22/data-parallel-training

With Data Parallelism

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑑𝑝

With Data Parallelism and grad. acc.

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐 ∗ 𝑑𝑝

1024

2

128

4

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

With gradient accumulation:

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

• Given a target 𝑔𝑏𝑠 :
• Assign 𝑚𝑏𝑠 according to memory of 1GPU.
• Assign 𝑑𝑝 according to available #GPUs.
• Accordingly set 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Combining Data Parallelism with Grad. Accumulation

https://siboehm.com/articles/22/data-parallel-training

With Data Parallelism

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑑𝑝

With Data Parallelism and grad. acc.

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐 ∗ 𝑑𝑝

1024

2

128

4

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

With gradient accumulation:

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

• Given a target 𝑔𝑏𝑠 :
• Assign 𝑚𝑏𝑠 according to memory of 1GPU.
• Assign 𝑑𝑝 according to available #GPUs.
• Accordingly set 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Combining Data Parallelism with Grad. Accumulation

https://siboehm.com/articles/22/data-parallel-training

With Data Parallelism

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑑𝑝

With Data Parallelism and grad. acc.

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐 ∗ 𝑑𝑝

1024

2

128

4

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

With gradient accumulation:

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

• Given a target 𝑔𝑏𝑠 :
• Assign 𝑚𝑏𝑠 according to memory of 1GPU.
• Assign 𝑑𝑝 according to available #GPUs.
• Accordingly set 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Combining Data Parallelism with Grad. Accumulation

https://siboehm.com/articles/22/data-parallel-training

With Data Parallelism

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑑𝑝

With Data Parallelism and grad. acc.

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐 ∗ 𝑑𝑝

1024

2

128

4

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

With gradient accumulation:

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

• Given a target 𝑔𝑏𝑠 :
• Assign 𝑚𝑏𝑠 according to memory of 1GPU.
• Assign 𝑑𝑝 according to available #GPUs.
• Accordingly set 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Combining Data Parallelism with Grad. Accumulation

https://siboehm.com/articles/22/data-parallel-training

With Data Parallelism

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑑𝑝

With Data Parallelism and grad. acc.

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐 ∗ 𝑑𝑝

1024

2

128

4

https://www.lcs2.in/
https://home.iitd.ac.in/
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training
https://siboehm.com/articles/22/data-parallel-training

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we scale DP as much as we want?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we scale DP as much as we want?
• DP benefit starts to break down at

large scales.
• As we add more and more GPUs

(hundreds or thousands), the overhead
of coordinating between them grows
significantly.

• The network requirements start to
become too large for the benefits.

• As a result, our setup will become less
and less efficient with each additional
GPU we add to the system.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Activation
Optimizer
Gradients

Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Activation
Optimizer
Gradients

Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Activation
Optimizer
Gradients

Parameters

What can we do to improve it further?

Is there any redundancy?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Recall weight utilization in mixed precision training

Activation
Optimizer
Gradients

Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

• Mixed precision: computation in bf16 (2 bytes); storage in
FP32
• 𝑚𝑝𝑎𝑟𝑎𝑚𝑠 = 2 ∗ Ψ

• 𝑚𝑔𝑟𝑎𝑑 = 2 ∗ Ψ

• 𝑚𝑜𝑝𝑡 = (4 + 4) ∗ Ψ

• 𝑚𝑝𝑎𝑟𝑎𝑚𝑠_𝑓𝑝32 = 4 ∗ Ψ

 (master weights)

Memory for Weights, Grads, and Optim States

Total: 16 ∗ Ψ𝑏𝑦𝑡𝑒𝑠

Why use mixed precision if total
memory is same?

1. Allows us to use optimized lower
precision operations on the GPU,
which are faster

2. Reduces the activation memory
requirements during the forward
pass

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

In mixed precision training,
• We keep params and grads in low precision (2 bytes)
• A copy of params in full precision FP32 (4 bytes)
• Optim states (1st and 2nd moment of grad.) in FP32

Do we need all optim states on all GPUs?

What can we do to improve it further?

Is there any redundancy?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard optim states on GPUs?

Optimizer Gradients Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard optim states on GPUs?

Optimizer Gradients Parameters

In DP,
1. We communicate the gradients via All-Reduce
2. Update the optim states – 1st & 2nd moment, and FP32 copy of weights

Do we need any additional operation here?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-Reduce

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-Reduce

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-Reduce

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-gather

All-Reduce

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-Gather – another communication primitive

Any guesses on what would all-gather look like?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-Gather – another communication primitive

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

All-gather

All-Reduce

ZeRO-1

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard gradients on GPUs?

Optimizer Gradients Parameters

Do we need to store all gradients on all GPUs?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard gradients on GPUs?

Optimizer Gradients Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

Reduce-scatter

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ReduceScatter – another communication primitive

Combination of Reduce and Scatter

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ReduceScatter – another communication primitive

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

Reduce-scatter

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

Reduce-scatter

All-gather

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

All-gather

Reduce-scatter

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Computation-communication timeline
Vanilla DP

DP + ZeRO-2/1

• ZeRO-1: We keep a copy of all gradients
• ZeRO-2: communicate and release the gradients on the fly
• In practice, both use ‘reduce-scatter’ for gradients and ‘all-gather’ for FP32 copy of params
• There is no real overhead to using ZeRO-2 over ZeRO-1 besides implementation

complexity, and indeed ZeRO-2 is usually the better option.

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard gradients on GPUs?

Optimizer Gradients Parameters

• Can we shard params as well?
• How would we run fwd/bwd passes if we don’t have all the model weights?

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard params on GPUs?

Optimizer Gradients Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-3 / FSDP- Fully Sharded Data Parallel
Forward Pass:
• Gather params on demand
• Flush them from memory

when not needed

All-gather

Backward Pass:
• Gather params on demand
• Reduce-scatter as in ZeRO-2

Forward pass

Flush params

Reduce-scatter

Backward pass

All-gather

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Fetch Layer 0
params (all-gather)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Forward pass thru
Layer 0

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Flush Layer 0
params

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Pre-fetching continues in
the background

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Params of last layer fetched only once and
used in both forward & backward pass

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Pre-fetching of Layer 1 params (overlapped
with Layer 2 computation)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Communicate the gradients for
param updates (reduce-scatter)

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Grad comm.
Ψ communication tax

Param comm. for bwd pass
Ψ communication tax

Param comm. for fwd pass
Ψ communication tax

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Grad comm.
Ψ communication tax

Param comm. for bwd pass
Ψ communication tax

Param comm. for fwd pass
Ψ communication tax

Grad comm.
Ψ communication tax

Param copy comm.
Ψ communication tax

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Comparing memory usage for 8B Model

Activation
Optimizer
Gradients

Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. +
all params +
all grad. +
all optim.
fit on 1 GPU

1 seq. act. +
all params +
all grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
all params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
(1/𝑁𝑑) params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

Parallelizes
/Shards

Batch of samples Batch + Optim.
states

Batch + Optim. +
Grads.

Batch + Optim. +
Grads. + Params

Memory
(excluding
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication
Tax

Ψ (grad. all-reduce) 2Ψ (grad. reduce
scatter + params all-
gather)

2Ψ 3Ψ

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. +
all params +
all grad. +
all optim.
fit on 1 GPU

1 seq. act. +
all params +
all grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
all params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
(1/𝑁𝑑) params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

Parallelizes
/Shards

Batch of samples Batch + Optim.
states

Batch + Optim. +
Grads.

Batch + Optim. +
Grads. + Params

Memory
(excluding
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication
Tax

Ψ (grad. all-reduce) 2Ψ (grad. reduce
scatter + params all-
gather)

2Ψ 3Ψ

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. +
all params +
all grad. +
all optim.
fit on 1 GPU

1 seq. act. +
all params +
all grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
all params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
(1/𝑁𝑑) params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

Parallelizes
/Shards

Batch of samples Batch + Optim.
states

Batch + Optim. +
Grads.

Batch + Optim. +
Grads. + Params

Memory
(excluding
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication
Tax

Ψ (grad. all-reduce) 2Ψ (grad. reduce
scatter + params all-
gather)

2Ψ 3Ψ

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. +
all params +
all grad. +
all optim.
fit on 1 GPU

1 seq. act. +
all params +
all grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
all params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
(1/𝑁𝑑) params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

Parallelizes
/Shards

Batch of samples Batch + Optim.
states

Batch + Optim. +
Grads.

Batch + Optim. +
Grads. + Params

Memory
(excluding
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication
Tax

Ψ (grad. all-reduce) 2Ψ (grad. reduce
scatter + params all-
gather)

2Ψ 3Ψ

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. +
all params +
all grad. +
all optim.
fit on 1 GPU

1 seq. act. +
all params +
all grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
all params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
(1/𝑁𝑑) params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

Parallelizes
/Shards

Batch of samples Batch + Optim.
states

Batch + Optim. +
Grads.

Batch + Optim. +
Grads. + Params

Memory
(excluding
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication
Tax

Ψ (grad. all-reduce) 2Ψ (grad. reduce
scatter + params all-
gather)

2Ψ 3Ψ

https://www.lcs2.in/
https://home.iitd.ac.in/

LLMs: Introduction & Recent AdvancesYatin Nandwani

Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. +
all params +
all grad. +
all optim.
fit on 1 GPU

1 seq. act. +
all params +
all grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
all params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

1 seq. act. +
(1/𝑁𝑑) params +
(1/𝑁𝑑) grad. +
(1/𝑁𝑑) optim
fit on 1 GPU

Parallelizes
/Shards

Batch of samples Batch + Optim.
states

Batch + Optim. +
Grads.

Batch + Optim. +
Grads. + Params

Memory
(excluding
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication
Tax

Ψ (grad. all-reduce) 2Ψ (grad. reduce
scatter + params all-
gather)

2Ψ 3Ψ

What if activations for one sequence do not
fit on one GPU?

https://www.lcs2.in/
https://home.iitd.ac.in/

	Slide 1: Large Language Models: Introduction and Recent Advances ELL881 · AIL821
	Slide 2: Recap
	Slide 3: How to increase batch size? – Gradient Accumulation
	Slide 4: How to increase batch size? – Gradient Accumulation
	Slide 5: How to increase batch size? – Gradient Accumulation
	Slide 6: How to increase batch size? – Data Parallelism
	Slide 7: How to increase batch size? – Data Parallelism
	Slide 8: How to Communicate gradients?
	Slide 9: How to Communicate gradients?
	Slide 10: How to Communicate gradients?
	Slide 11: How to Communicate gradients?
	Slide 12: DP: Computation and Communication timeline
	Slide 13: DP: Computation and Communication timeline
	Slide 14: DP: Computation and Communication timeline
	Slide 15: DP: Computation and Communication timeline
	Slide 16: DP: Computation and Communication timeline
	Slide 17: DP: Overlap grad. sync. with backward pass
	Slide 18: DP: Overlap grad. sync. with backward pass
	Slide 19: DP: Overlap grad. sync. with backward pass
	Slide 20: DP: Bucketing Gradients
	Slide 21: Combining Data Parallelism with Grad. Accumulation
	Slide 22: Combining Data Parallelism with Grad. Accumulation
	Slide 23: Combining Data Parallelism with Grad. Accumulation
	Slide 24: Combining Data Parallelism with Grad. Accumulation
	Slide 25: Combining Data Parallelism with Grad. Accumulation
	Slide 26: Can we scale DP as much as we want?
	Slide 27: Can we scale DP as much as we want?
	Slide 28: Assumptions of DP
	Slide 29: Assumptions of DP
	Slide 30: Assumptions of DP
	Slide 31: Assumptions of DP
	Slide 32: Assumptions of DP
	Slide 33: Memory for Weights, Grads, and Optim States
	Slide 34: Assumptions of DP
	Slide 35: Can we shard optim states on GPUs?
	Slide 37: Can we shard optim states on GPUs?
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: All-Gather – another communication primitive
	Slide 45: All-Gather – another communication primitive
	Slide 46
	Slide 47: Can we shard gradients on GPUs?
	Slide 48: Can we shard gradients on GPUs?
	Slide 49
	Slide 50
	Slide 51
	Slide 52: ReduceScatter – another communication primitive
	Slide 53: ReduceScatter – another communication primitive
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Computation-communication timeline
	Slide 58: Can we shard gradients on GPUs?
	Slide 59: Can we shard params on GPUs?
	Slide 60: ZeRO-3 / FSDP- Fully Sharded Data Parallel
	Slide 61: Increased communication cost in FSDP?
	Slide 62: Increased communication cost in FSDP?
	Slide 63: Increased communication cost in FSDP?
	Slide 64: Increased communication cost in FSDP?
	Slide 65: Increased communication cost in FSDP?
	Slide 66: Increased communication cost in FSDP?
	Slide 67: Increased communication cost in FSDP?
	Slide 68: Increased communication cost in FSDP?
	Slide 69: Increased communication cost in FSDP?
	Slide 70: Increased communication cost in FSDP?
	Slide 71: Comparing memory usage for 8B Model
	Slide 72: Summary
	Slide 73: Summary
	Slide 74: Summary
	Slide 75: Summary
	Slide 76: Summary
	Slide 77: Summary

