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Recap
• How to train big models on big data?
• What’s in the GPU memory during training?

• Model params
• Param gradients
• Optim states
• Activations

• What is the size of params / grads / optim states?
• What is the size of activations?
• How to reduce activation memory?

• Activation re-computation aka Gradient checkpointing

• How to increase batch size?
• Gradient accumulation ( run fwd / bwd k times before optim.step())

• Can we parallelize grad. Accumulation?
2



LLMs: Introduction & Recent AdvancesYatin Nandwani

How to increase batch size? – Gradient Accumulation
• Process smaller micro-batches 

sequentially
• 𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Only one micro-batch's worth of 
activations needs to be kept in 
memory at a time
Requires multiple consecutive 
forward/backward passes per 
optimization step

How to speedup?

https://www.lcs2.in/
https://home.iitd.ac.in/
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How to increase batch size? – Gradient Accumulation

How to speedup?
• Each forward / backward pass is on a 

different micro-batch.
• Independent of each other
• Can we run them in parallel?

https://www.lcs2.in/
https://home.iitd.ac.in/
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How to increase batch size? – Gradient Accumulation

https://siboehm.com/articles/22/data-parallel-training

• Process smaller micro-batches 
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How to increase batch size? – Data Parallelism

https://siboehm.com/articles/22/data-parallel-training

• Process smaller micro-batches 
sequentially Parallelly
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How to increase batch size? – Data Parallelism

https://siboehm.com/articles/22/data-parallel-training

• Process smaller micro-batches 
sequentially Parallelly

• Keep a replica of params, grads, 
and optim states on each GPU

• Activations and grads computed 
locally and independently for 
each micro batch on each GPU

• Communicate the gradients to 
each other

• Independently update optim 
states & params on each GPU.

https://www.lcs2.in/
https://home.iitd.ac.in/
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How to Communicate gradients? 

A,B,C: gradients computed on each 
node at step t.

All-Reduce• Use “collective operations” – natively 
provided by PyTorch

• Called “communication primitives” -  
defined in torch.distributed API

• Each node performs some computation, 
e.g. grad. computation

• We communicate the result to other 
nodes for next computation step (t+1)

https://www.lcs2.in/
https://home.iitd.ac.in/
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How to Communicate gradients? 
All-Reduceimport torch

import torch.distributed as dist
 
def init_process():
  dist.init_process_group(backend='nccl’)
  torch.cuda.set_device(dist.get_rank())

def example_all_reduce():
  tensor = torch.tensor([dist.get_rank()+1] * 5,
               dtype=torch.float32
  ).cuda() 
  print(f“Before all_reduce on rank\
  {dist.get_rank()}: {tensor}")
  dist.all_reduce(tensor, op=dist.ReduceOp.SUM) 
  print(f“After all_reduce on rank\
  {dist.get_rank()}: {tensor}")

• Initialize a process group
• Setup communication backend
• Assign a “rank” (0,1,2...) to each node
• establishes a connection between the workers 

Rank of the node

torchrun --nproc_per_node=3 dist_op.py

https://www.lcs2.in/
https://home.iitd.ac.in/
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DP: Computation and Communication timeline
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DP: Computation and Communication timeline

• GPUs are sitting idle while grads are synced.
• Can we avoid it?
• OVERLAP GRADIENT SYNCHRONIZATION WITH 

BACKWARD PASS

https://www.lcs2.in/
https://home.iitd.ac.in/
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DP: Overlap grad. sync. with backward pass

• Attach an all-reduce hook 
function to each parameter

def register_backward_hook(self, hook): 
""" Registers a backward hook for all parameters 
of the model that require gradients. """ 
  for p in self.module.parameters(): 
    if p.requires_grad is True:
      p.register_post_accumulate_grad_hook(hook)

https://www.lcs2.in/
https://home.iitd.ac.in/
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DP: Overlap grad. sync. with backward pass

• Attach an all-reduce hook 
function to each parameter

def register_backward_hook(self, hook): 
""" Registers a backward hook for all parameters 
of the model that require gradients. """ 
  for p in self.module.parameters(): 
    if p.requires_grad is True:
      p.register_post_accumulate_grad_hook(hook)

Frequent communication 
with small packets. 

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

DP: Bucketing Gradients

• Communication: more efficient when 
performed on large tensors

• Group gradients into “buckets” and launch a 
single all-reduce for all the gradients within 
the same bucket

• Like packing items into boxes before shipping 

• More efficient to send a few big boxes than 
many small ones. 

• Significantly reduce the communication 
overhead and speed up the communication 
operation.

https://www.lcs2.in/
https://home.iitd.ac.in/
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With gradient accumulation:

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

• Given a target 𝑔𝑏𝑠 :
• Assign 𝑚𝑏𝑠 according to memory of 1GPU.
• Assign 𝑑𝑝 according to available #GPUs.
• Accordingly set 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐

Combining Data Parallelism with Grad. Accumulation

https://siboehm.com/articles/22/data-parallel-training

With Data Parallelism

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑑𝑝

With Data Parallelism and grad. acc.

𝑏𝑠 = 𝑔𝑏𝑠 = 𝑚𝑏𝑠 ∗ 𝑔𝑟𝑎𝑑_𝑎𝑐𝑐 ∗ 𝑑𝑝

1024

2

128

4
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Can we scale DP as much as we want?
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https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we scale DP as much as we want?
• DP benefit starts to break down at 

large scales.
• As we add more and more GPUs 

(hundreds or thousands), the overhead 
of coordinating between them grows 
significantly.

• The network requirements start to 
become too large for the benefits. 

• As a result, our setup will become less 
and less efficient with each additional 
GPU we add to the system.

https://www.lcs2.in/
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Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

https://www.lcs2.in/
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Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Activation
Optimizer
Gradients

Parameters
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Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Activation
Optimizer
Gradients

Parameters

What can we do to improve it further?

Is there any redundancy?

https://www.lcs2.in/
https://home.iitd.ac.in/
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Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

Recall weight utilization in mixed precision training

Activation
Optimizer
Gradients

Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/
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• Mixed precision: computation in bf16 (2 bytes); storage in 
FP32
• 𝑚𝑝𝑎𝑟𝑎𝑚𝑠 = 2 ∗ Ψ

• 𝑚𝑔𝑟𝑎𝑑  = 2 ∗ Ψ

• 𝑚𝑜𝑝𝑡  = (4 + 4) ∗ Ψ

• 𝑚𝑝𝑎𝑟𝑎𝑚𝑠_𝑓𝑝32 = 4 ∗ Ψ

     (master weights)

Memory for Weights, Grads, and Optim States

Total: 16 ∗ Ψ𝑏𝑦𝑡𝑒𝑠

Why use mixed precision if total 
memory is same?

1. Allows us to use optimized lower 
precision operations on the GPU, 
which are faster

2. Reduces the activation memory 
requirements during the forward 
pass

https://www.lcs2.in/
https://home.iitd.ac.in/
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Assumptions of DP
• Model fits on 1 GPU
• One sequence fits on 1 GPU

Activation
Optimizer
Gradients

Parameters

Selective Activation

1024 2048 4096 8192

8B Model

1024 2048 4096 8192

3B Model
Selective Activation

In mixed precision training, 
• We keep params and grads in low precision (2 bytes)
• A copy of params in full precision FP32 (4 bytes)
• Optim states (1st and 2nd moment of grad.) in FP32

Do we need all optim states on all GPUs?

What can we do to improve it further?

Is there any redundancy?

https://www.lcs2.in/
https://home.iitd.ac.in/
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Can we shard optim states on GPUs?

Optimizer Gradients  Parameters

https://www.lcs2.in/
https://home.iitd.ac.in/
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Can we shard optim states on GPUs?

Optimizer Gradients  Parameters

In DP,
1.  We communicate the gradients via All-Reduce
2. Update the optim states  – 1st  & 2nd moment, and FP32 copy of weights

Do we need any additional operation here?

https://www.lcs2.in/
https://home.iitd.ac.in/
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ZeRO-1
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All-gather

All-Reduce

ZeRO-1
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All-Gather – another communication primitive

Any guesses on what would all-gather look like?

https://www.lcs2.in/
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All-Gather – another communication primitive
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All-gather

All-Reduce

ZeRO-1
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https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Can we shard gradients on GPUs?

Optimizer Gradients  Parameters

Do we need to store all gradients on all GPUs?

https://www.lcs2.in/
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Can we shard gradients on GPUs?

Optimizer Gradients  Parameters
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ZeRO-2
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ZeRO-2
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ZeRO-2

Reduce-scatter
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ReduceScatter – another communication primitive

Combination of Reduce and Scatter
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ReduceScatter – another communication primitive

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

ZeRO-2

Reduce-scatter
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ZeRO-2

Reduce-scatter

All-gather
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ZeRO-2

All-gather

Reduce-scatter
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Computation-communication timeline
Vanilla DP

DP + ZeRO-2/1

• ZeRO-1: We keep a copy of all gradients
• ZeRO-2: communicate and release the gradients on the fly
• In practice, both use ‘reduce-scatter’ for gradients and ‘all-gather’ for FP32 copy of params
• There is no real overhead to using ZeRO-2 over ZeRO-1 besides implementation 

complexity, and indeed ZeRO-2 is usually the better option.
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Can we shard gradients on GPUs?

Optimizer Gradients  Parameters

• Can we shard params as well? 
• How would we run fwd/bwd passes if we don’t have all the model weights?
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Can we shard params on GPUs?

Optimizer Gradients  Parameters
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ZeRO-3 / FSDP- Fully Sharded Data Parallel
Forward Pass:
• Gather params on demand
• Flush them from memory 

when not needed

All-gather

Backward Pass:
• Gather params on demand
• Reduce-scatter as in ZeRO-2

Forward pass

Flush params

Reduce-scatter

Backward pass

All-gather
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Fetch Layer 0 
params (all-gather)
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Forward pass thru 
Layer 0
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Flush Layer 0 
params
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Pre-fetching continues in 
the background
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Params of last layer fetched only once and 
used in both forward & backward pass
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Pre-fetching of Layer 1 params (overlapped 
with Layer 2 computation)
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Communicate the gradients for 
param updates (reduce-scatter)
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Grad comm.
Ψ communication tax

Param comm. for bwd pass
Ψ communication tax

Param comm. for fwd pass
Ψ communication tax
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Increased communication cost in FSDP?
ZeRO-2/1

ZeRO-3Grad comm.
Ψ communication tax

Param comm. for bwd pass
Ψ communication tax

Param comm. for fwd pass
Ψ communication tax

Grad comm.
Ψ communication tax

Param copy comm.
Ψ communication tax
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Comparing memory usage for 8B Model

Activation
Optimizer
Gradients

Parameters
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Summary
Vanilla DP ZeRO-1 ZeRO-2 ZeRO-3

Assumptions 1 seq. act. + 
all params + 
all grad. + 
all optim. 
fit on 1 GPU

1 seq. act. + 
all params + 
all grad. + 
(1/𝑁𝑑) optim 
fit on 1 GPU

1 seq. act. + 
all params + 
(1/𝑁𝑑)  grad. + 
(1/𝑁𝑑) optim 
fit on 1 GPU

1 seq. act. + 
(1/𝑁𝑑)  params + 
(1/𝑁𝑑)  grad. + 
(1/𝑁𝑑) optim 
fit on 1 GPU

Parallelizes 
/Shards

Batch of samples Batch + Optim. 
states

Batch + Optim. + 
Grads.

Batch + Optim. + 
Grads. + Params

Memory 
(excluding 
activations)

2Ψ + 2Ψ + 12Ψ
2Ψ + 2Ψ +

12Ψ

𝑁𝑑
2Ψ +

2Ψ + 12Ψ

𝑁𝑑

2Ψ + 2Ψ + 12Ψ

𝑁𝑑

Communication 
Tax

Ψ (grad. all-reduce) 2Ψ ( grad. reduce 
scatter + params all-
gather )

2Ψ 3Ψ
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What if activations for one sequence do not 
fit on one GPU?
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