
ELL8299/ELL881/AIL861

Advances in Large Language Models

Semester I, 2025-26

Answer the questions in the spaces provided. No extra pages will be given.
Answers should be brief and to-the-point.

Course Code: Name: Entry Number:

Total Marks: 20 Time: 40 minutes

1. What is a language model? Write the expression for perplexity of a sentence S (consisting of a
sequence of tokens {t1, t2, ..., tn}) for a trigram language model. (1+1 = 2 marks)

Answer:

• A probabilistic model which assigns a probability to a sequence of tokens, i.e. computes
P(t1, t2, ..., tn) for a sequence of tokens {t1, t2, ..., tn}, is called a language model.

• PPL(S) = P(t1, t2, ..., tn)
− 1

n =
[

1
P(t1)P(t2|t1)Πn

i=3P(ti|ti−1,ti−2)

] 1
n

2. (a) Why do Transformers use positional encoding while LSTMs don’t? Explain briefly. (2 marks)
(b) Write the difference between BERT and GPT in terms of pre-training objective. (1 mark)

Answer:

(a) Transformers use positional encoding because their self-attention mechanism is permutation-
invariant, hence no information regarding the order of the tokens is captured by self-attention.
LSTMs, on the other hand, don’t need separate positional encoding as their architecture is
inherently sequential, thus naturally capturing token ordering.

(b) BERT is pre-trained primarily using the masked language modeling objective, where a
certain percentage of tokens are randomly masked and the model is trained to predict these
masked tokens by considering the bidirectional context. In addition to it, BERT is also trained
using the next sentence prediction objective. GPT, on the other hand, is pre-trained using
the causal language modeling, or, next-token-prediction objective. It is trained to predict
the next token in a sequence given only the preceding tokens.

3. Suppose you are given an instruction tuning dataset D = {(Pi,Ri)}NT
i=1 consisting of NT (prompt,

response) pairs, where Pi is the input prompt and Ri is the corresponding ground-truth response.
Assume that the number of tokens in a sequence S is denoted as |S|; thus, we can expand Pi and
Ri as:

Pi = {p(1)i , p
(2)
i , . . . , p

(|Pi|)
i },

Ri = {r(1)i , r
(2)
i , . . . , r

(|Ri|)
i }

Write an expression for the loss optimized during instruction tuning of an auto-regressive language
model on the given dataset D. (2 marks)

Answer: During instruction tuning, the cross-entropy loss over the response tokens is considered,
the expression for which can be formalized as:

LIT =

−
NT∑
i=1

|Ri|∑
j=1

log PM

(
r
(j)
i | Pi, r

(1)
i , . . . , r

(j−1)
i

)
NT∑
i=1

|Ri|

4. Give one advantage of subword tokenization methods (BPE/WordPiece/Unigram) over pure word-
level tokenization. (1 mark)

Answer: Subword tokenization methods are more robust and effcetive in handling out-of-vocabulary
(OOV) words, compared to pure word-level tokenization techniques.

5. Assume that a decoder-only Transformer-based language model (LM) consists of 12 Transformer
layers, and each multi-head self-attention block in every layer has 12 attention heads (the overall
embedding dimension is divided equally among the 12 heads). The MLP/Feed-forward block in each
layer has an intermediate hidden state dimension of dhidden = 3072. The LM has an embedding
dimension of d = 768 and a vocabulary size of V = 50257. It uses trainable positional encoding and
is designed to handle only a maximum sequence length of L = 1024. At the end of 12 Transformer
layers, there is another LayerNorm block. The embedding and unembedding matrices are tied (i.e.,
they are transpose of one another). Assuming no separate bias terms during attention computations
or for the MLPs, what is the total number of trainable parameters in this LM? [Hint: Each
transformer layer consists of 2 LayerNorm blocks, and each LayerNorm block has 2
trainable parameters for each embedding dimension. Also, don’t forget to include the
projection matrix applied to the concatenated output of the 12 heads.] (3 marks)

Answer:

• Embedding layer: d×V (Since the embedding and unembedding matrices are tied, we don’t
need to include unembedding matrix parameters separately.)

• Positional encoding layer: L× d

• Each Transformer layer: 4d2 + 4d+ 2dhiddend

- Attention block: For every attention head, the embedding dimension is d
12 . Hence, each

of WQ, WK and WV matrices are of dimension d× d
12 . For 12 attention heads, number of

parameters = 12×
(
3× d× d

12

)
= 3d2. The projection matrix is of dimension d×d. Hence

total number of parameters in the attention layer = 3d2 + d2 = 4d2.

- LayerNorm blocks: There are 2 LayerNorm blocks in each Transformer layer - one after
the attention block and one after MLP. Hence total number of parameters = 2×(2×d) = 4d.

- MLP: The up-projection matrix of the MLP is of shape d×dhidden and the down-projection
matrix is of shape dhidden × d. Hence, total number of parameters = 2× dhidden × d.

• Last LayerNorm: 2× d

Total number of parameters = dV + Ld+ 12(d2 + 4d+ 2dhiddend) + 2d
= (768× 50257) + (1024× 768) + 12× (4× 7682 + 4× 768 + 2× 3072× 768) + 2× 768
= 124, 356, 864 = 124.35 Million.

6. (a) What is the primary difference between aligning LLMs with human preferences using proximal
policy optimization (PPO) and direct preference optimization (DPO)? (1 mark)
(b) Write the objective function corresponding to the alignment process using PPO. Assume πref

to be the instruction-tuned model, and πθ to be the model we are aligning. Also, assume that we
already have a trained reward model which assigns reward r(x, y) for an output y corresponding to
the input x. (2 marks)
(c) What is the primary advantage of group relative policy optimization (GRPO) over PPO for LLM
alignment? Write the objective function for GRPO and contradict it with the PPO-objective you
wrote in (b). (1+2 = 3 marks)

Answer:

(a) The primary difference is that Proximal Policy Optimization (PPO) is a multi-stage re-
inforcement learning (RL) process requiring a separate explicitly trained reward model, whereas
Direct Preference Optimization (DPO) bypasses the explicit reward modeling and RL steps by
deriving a direct loss function from the preference data and optimizing the language model’s policy
directly to satisfy those preferences, effectively treating the language model as an implicit reward
model.

Page 2

(b) The practical PPO algorithm for LLM alignment optimizes a clipped surrogate objective to
ensure stable updates. This objective uses an advantage estimate, ÂPPO(x, y), which is calculated
with the help of a learned value function (the critic), Vϕ. The objective function to maximize is:

LPPO(θ) = Ex∼D,y∼πref

[
min

(
πθ(y|x)
πref (y|x)

ÂPPO(x, y), clip

(
πθ(y|x)
πref (y|x)

, 1− ε, 1 + ε

)
ÂPPO(x, y)

)]
where, the expectation is taken over prompts x from a distribution D and responses y sampled from

the reference policy πref .
πθ(y|x)

πref (y|x) is the importance sampling ratio. ÂPPO(x, y) is the advantage,

typically an estimate like the Generalised Advantage Estimate (GAE). It’s calculated on a per-token
basis using the reward model r(x, y) and the critic Vϕ, which estimates the expected future reward
at each step of the generation. ε is a small hyperparameter that defines the clipping range.

(c) The primary advantage of GRPO is that it is critic-free. Unlike standard PPO, which requires
training a separate value function (a critic) to estimate advantages, GRPO calculates advantages
by normalizing the rewards of multiple responses sampled for the same prompt relative to each other.

The optimization objective for GRPO uses the same clipped surrogate structure as PPO, but with
a different, critic-free advantage calculation. For a given prompt x, we first sample K completions
{y1, y2, . . . , yK} from πref . The advantage for a specific completion yi is its normalized reward
relative to the group:

ÂGRPO(x, yi) =
r(x, yi)− µr

σr + ϵ
where µr =

1

K

K∑
j=1

r(x, yj) and σr =

√√√√ 1

K

K∑
j=1

(r(x, yj)− µr)2

The GRPO objective to be maximized is then:

LGRPO(θ) = E
[
min

(
πθ(yi|x)
πref (yi|x)

ÂGRPO(x, yi), clip

(
πθ(yi|x)
πref (yi|x)

, 1− ε, 1 + ε

)
ÂGRPO(x, yi)

)]

Contrast with PPO: PPO calculates advantage using a learned critic Vϕ(x) that provides an

absolute baseline for the reward. The advantage ÂPPO(x, y) is typically a per-token estimate that
measures how much better the actual outcome following a token generation was compared to what the
critic predicted for that state. GRPO, being critic-free, computes a relative advantage ÂGRPO(x, yi)
by comparing a response’s reward to the mean and standard deviation of rewards from a group of
peer responses generated at the same time.

7. Explain briefly how gradient checkpointing works. Why do we use gradient checkpointing during
training of large models? (2+1 = 3 marks)

Answer: Gradient checkpointing is a technique used to reduce the memory consumption of training
large models by trading computation for memory. In a standard forward pass, all intermediate activa-
tions are stored to be used during the backward pass for gradient calculation. Gradient checkpointing
modifies this by:

(i) Selective Saving: During the forward pass, it avoids storing the intermediate activations for
designated checkpointed layers. It only saves the inputs to these layers, or segments of layers.

(ii) Re-computation: During the backward pass, whenever the gradients for a checkpointed layer
are needed, it recomputes the activations for that layer by running a localized forward pass
starting from the nearest saved input. Once the gradients are computed with these re-calculated
activations, the activations are discarded.

The primary reason for using gradient checkpointing is to drastically reduce the memory required
for training. The activations of deep neural networks can consume a huge amount of GPU memory.
By not storing them and recomputing them instead, we can train much larger models or use larger
batch sizes than would otherwise fit into the available hardware memory, at the cost of a moderate
increase in training time.

Page 3

